ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования «Московский физико-технический институт (государственный университет)»

Кафедра теоретической астрофизики и квантовой теории поля

Изучение транспортных коэффициентов кварк-глюонной плазмы методами решёточного моделирования

(выпускная квалификационная работа магистра)

Выполнил:

студент 121 группы Никита Юрьевич Астраханцев

Научный руководитель:

д.ф.-м.н., Брагута В.В.

Долгопрудный 2017

Содержание

1	Введение	3
2	Детали вычислений	4
3	Спектральная функция из фитирования	7
4	Метод Бакуса-Гильберта для нахождения спектральной фу ции	′ нк - 11
5	Объёмная вязкость: введение	19
6	Объёмная вязкость: вычисление	19
7	Обсуждение и выводы	21

1 Введение

Современные эксперименты по столкновению тяжёлых ионов такие как RHIC и LHC направлены на изучение кварк-глюонной плазмы (КГП). Гидродинамическое описание эволюции КГП хорошо показало себя в описании результатов эксперимента [1, 2]. Несмотря на это, гидродинамика является лишь эффективной теорией, которая правильным образом учитывает только динамику инфракрасных степеней свободы. Параметры этой эффективной теории, такие как сдвиговая вязкость, объёмная вязкость, проводимость и т.д. не могут быть вычислены в рамках гидродинамики и должны быть определены либо из эксперимента, либо вычислены из первых принципов.

Измерение эллиптического потока [3, 4] позволяет оценить значение вязкости КГП. В частности, гидродинамика описывает экспериментальные данные, если отношение сдвиговой вязкости к плотности энтропии лежит в диапазоне $\eta/s = (1 - 2.5) \times 1/4\pi$ [5]. Эти значения близки к результату N = 4 Суперсимметричной теории Янга-Миллса в области сильной связи $\eta/s = 1/4\pi$ [Policastro et al.(2001)Policastro, Son, and Starinets] и отклоняется от результата, вычисленного в режиме $\eta/s \sim \text{const}/(g^4 \log(1/g)) \sim 1$ [6, 7].

Это позволяет сделать вывод, что малое отношение η/s определяется непертурбативной динамикой. Попытки непертурбативных вычислений сдвиговой вязкости были предприняты в работах [8, 9, 10, 11]. К сожалению, непросто оценить систематические ошибки этих подходов, и сегодня отсутствует аналитический подход, основанный на первых принципах и полностью учитывающий непертурбативную динамику КГП. Поэтому решёточное моделирование КХД является единственным способом вычислить сдвиговую вязкость КГП.

Несмотря на существенный прогресс в решёточном изучении свойств КХД, сегодня невозможно вычислить сдвиговую вязкость КГП с динамическими кварками. Даже в чистой гидродинамике вычисление сдвиговой вязкости является невероятно сложной задачей. Было предпринято лишь немного попыток вычислить сдвиговую вязкость SU(3)-глюодинамики в работах [Karsch and Wyld(1987), Nakamura and Sakai(2005), Meyer(2007), Meyer(2009 12] и SU(2)-гидродинамики в работах [Braguta and Kotov(2013), 13]. В этой работе мы планируем изучить температурную зависимость сдвиговой вязкости SU(3)-глюодинамики в окрестности фазового перехода конфайнмент $T/T_c \in [0.9, 1.5]$.

В первой части работы обсуждается измерение и определение сдвиговой вязкости кварк-глюонной плазмы. Предпоследняя глава будет посвящена объёмной вязкости, которая определяется близкими методами с поправками на другой коррелятор.

2 Детали вычислений

Сдвиговая вязкость связана с Евклидовой корреляционной функцией тензора энергии-импульса $T_{\mu\nu} = \frac{1}{4} \delta_{\mu\nu} F^a_{\alpha\beta} F^a_{\alpha\beta} - F^a_{\mu\alpha} F^a_{\nu\alpha}$ (для простоты мы опустили аномалию следа):

$$C(x_0) = T^{-5} \int d^3 \mathbf{x} \langle T_{12}(0) T_{12}(x_0, \mathbf{x}) \rangle, \qquad (2.1)$$

где T — температура системы. Корреляционная функция (6.1) может быть записана в терминах спектральной функции $\rho(\omega)$

$$C(x_0) = T^{-5} \int_0^\infty \rho(\omega) \frac{\cosh \omega(\frac{1}{2T} - x_0)}{\sinh \frac{\omega}{2T}} d\omega.$$
(2.2)

Спектральная функция содержит ценную информацию о свойствах среды. Для того, чтобы найти сдвиговую вязкость, используется формула Кубо [Kubo(1957)]

$$\eta = \pi \lim_{\omega \to 0} \frac{\rho(\omega)}{\omega}, \tag{2.3}$$

Решёточные вычисления сдвиговой вязкости можно разделить на две части. Первая часть — измерение корреляционной функции $C(x_0)$ с достаточной точностью. Эта часть требует существенных вычислительных ресурсов, но в случае чистой глюодинамики точность может быть сильно улучшена с помощью двухуровневого алгоритма [Meyer(2003)]. Вторая часть — определение спектральной функции $\rho(\omega)$ из корреляционной функции $C(x_0)$. Эта часть, возможно, наиболее сложна, так как требуется определить непрерывную спектральную функцию $\rho(\omega)$ из интегрального уравнения (6.2) для набора из $\mathcal{O}(10)$ значений функции $C(x_0)$, измеренных в решёточном моделировании.

Ниже нам потребуются свойства спектральной функции. Сперва нужно вспомнить самые общие свойства: положительность спектральной функции $\rho(\omega)/\omega \ge 0$ и нечётность: $\rho(-\omega) = -\rho(\omega)$. На больших частотах ожидается, что асимптотическая свобода проявит себя в приближении спектральной функции к посчитанной в режиме слабой связи. Для этого также важно записать выражение для спектральной функции в первом приближении по сильной константе связи [Meyer(2008a)]

$$\rho^{LO}(\omega) = \frac{1}{10} \frac{d_A}{(4\pi)^2} \frac{\omega^4}{\tanh(\frac{\omega}{4T})} + \left(\frac{2\pi}{15}\right)^2 d_A T^4 \ \omega \delta(\omega), \qquad (2.4)$$

где $d_A = N_c^2 - 1 = 8$ для SU(3)-глюодинамики.

Во втором приближении спектральная функция на больших ω также известна [Kataev et al.(1982)Kataev, Krasnikov, and Pivovarov]:

$$\lim_{\omega \to \infty} \rho^{NLO}(\omega) = \frac{1}{10} \frac{d_A}{(4\pi)^2} \omega^4 \left(1 - \frac{5\alpha_s N_c}{9\pi}\right)$$
(2.5)

Нужно отметить, что на больших ω спектральная функция растёт как $\rho(\omega) \sim \omega^4$, что приводит к большому пертурбативному вкладу в корреляционную функцию на всех значениях Евклидового времени x_0 . Вычисления показывают, что даже при $x_0 = 1/(2T)$ древесный вклад составляет $\sim 80 - 90\%$ полного значения корреляционной функции. Такое поведение при больших ω приводит к быстрому убыванию корреляционной функции $C(x_0) \sim 1/x_0^5$ на малых x_0 . По этой причине отношение шум/сигнал для $C(x_0)$ очень мало при $x_0 \gg a$, и решёточное вычисление корреляционной функции.

В численном моделировании используется Вильсоновское калибровочное действие для SU(3)-глюодинамики

$$S_g = \beta \sum_{x,\mu < \nu} \left(1 - \frac{1}{3} \operatorname{ReTr} U_{\mu,\nu}(x) \right), \qquad (2.6)$$

где $U_{\mu,\nu}(x)$ — произведение линковых переменных вдоль элементарного прямоугольника (μ, ν) , начинающегося в x.

Для тензора $F_{\mu\nu}$ используется кловерная схема дискретизации:

$$F_{\mu\nu}^{(clov)}(x) = \frac{1}{4iga^2} (V_{\mu,\nu}(x) + V_{\nu,-\mu}(x) + V_{-\mu,-\nu}(x) + V_{-\nu,\mu}(x)),$$

$$V_{\mu,\nu}(x) = \frac{1}{2} (U_{\mu,\nu}(x) - U_{\nu,\mu}(x)).$$
(2.7)

Можно легко определить тензор энергии-импульса на решётке, используя его непрерывное выражение и решёточную дискретизацию (2.7) тензора $F_{\mu\nu}$.

Также заметим, что вместо корреляционной функции $\langle T_{12}(x)T_{12}(y)\rangle$ в этой работе измерятся корреляционная функция $\frac{1}{2}(\langle T_{11}(x)T_{11}(y)\rangle - \langle T_{11}(x)T_{22}(y)\rangle)$. Обе функции совпадают в непрерывном пределе [Karsch and Wyld(1987)]. В то же время, перенормировочные свойства диагональных компонент тензора энергии-импульса $T_{\mu\nu}$ известны (см. ниже).

Стало общепринято представлять значение сдвиговой вязкости в виде отношения вязкости на плотность энтропии η/s . Для однородным систем плотность энтропии *s* может быть выражена, как $s = \frac{\epsilon+p}{T}$, где ϵ — плотность энергии и p — давление. Эти термодинамические величины были измерены с помощью метода, описанного в [Engels et al. (2000)Engels, Karsch, and Scheideler].

Рис. 1: Корреляционные функции $C(x_0)$ для температур $T/T_c = 0.9, 1.0, 1.2, 1.5.$

Тензор энергии-импульса в непрерывной теории есть набор Нётеровских токов, связанных с трансляционной инвариантностью действия. В решёточной формулировке теории поля нет непрерывной вращательной инвариантности и требуется перенормировать тензор энергии-импульса. Для корреляционной функции, рассмотренной в данной работе, перенормировка мультипликативна [Meyer(2011)]. Перенормировочные факторы зависят от схемы дискретизации. К примеру, для диагональных компонент $T_{\mu\nu}$ (когда $\mu = \nu$) и плакетной дискретизации $T_{\mu\nu}$:

$$T_{\mu\mu} = \frac{2}{a^4 g^2} \left(-\sum_{\nu \neq \mu} \operatorname{Tr} U_{\mu,\nu}(x) + \sum_{\nu,\sigma \neq \mu,\sigma > \nu} \operatorname{Tr} U_{\sigma,\nu}(x) \right)$$

перенормировочные факторы связаны с анизотропийными коэффициентами [Engels et al.(2000)Engels, Karsch, and Scheideler, Meyer(2008b)]: $T_{\mu\nu}^{(ren)} = Z^{(plaq)}T_{\mu\nu}^{(plaq)}, Z^{(plaq)} = 1 - \frac{1}{2}g_0^2(c_{\sigma} - c_{\tau})$, где c_{σ} и c_{τ} определены в [Engels et al.(2000)Engels, Karsch, and Scheideler].

Используя перенормировочные факторы из плакетной схемы дискретизации T_{00} , можно определить перенормировочные факторы для кловерной дискретизации, просто фитируя вакуумные значения перенормированного T_{00} : $Z^{(plaq)}\langle T_{00}^{(plaq)}\rangle = Z^{(clov)}\langle T_{00}^{(clov)}\rangle$.

3 Спектральная функция из фитирования

Были измерены корреляционные функции $C(x_0)$ на решётке 16×32^3 при для следующего набора β : $\beta = 6.491, 6.512, 6.532, 6.575, 6.647, 6.712, 6.811, 6.897,$ который соответствует температурам $T/T_c \simeq 0.9, 0.925, 0.95, 1.0, 1.1, 1.2, 1.35, 1.5$. Применение двухуровнего алгоритма позволила нам получить ошибки не более, чем $\sim 2 - 3\%$ на расстоянии $Tx_0 = 1/2$ для всех рассматриваемых температур. Для остальных точек точность ещё выше. На Рис. 6 построены корреляционные функции для нескольких температур.

Следующий шаг вычисления сдвиговой вязкости — нахождение спектральной функции из интегрального уравнения (6.2). В этом разделе мы используем физически мотивированные анзацы спектральной функции с неизвестными параметрами. Эти параметры будут определены из процедуры фитирования.

Первый анзац, используемый в вычислении, мотивирован правилом сумм КХД [Shifman et al.(1979)Shifman, Vainshtein, and Zakharov]. Для построения спектральной функции мы объединяем гидродинамическое поведение на малых частотах с асимптотической свободой на больших частотах ¹

$$\rho_1(\omega) = BT^3 \omega \theta(\omega_0 - \omega) + A \rho_{lat}(\omega) \theta(\omega - \omega_0).$$
(3.1)

В последней формуле $\rho_{lat}(\omega)$ — древесное решёточное выражение для спектральной функции, вычисленное для корреляционной функции $\sim \frac{1}{2}(\langle T_{11}(x)T_{11}(y)\rangle - \langle T_{11}(x)T_{22}(y)\rangle)$ с кловерной дискретизацией тензора $F_{\mu\nu}$ на решётке с фиксированными L_t и $L_s \to \infty$. Функция $\rho_{lat}(\omega)$ была вычислена в работе [13].

Выше было отмечено, что корреляционная функция $C(x_0)$ очень чувствительна к ультрафиолетовым свойствам спектральной функции. Для получения точного описания решёточных данных, мы использовали на больших частотах спектральную функцию $\rho_{lat}(\omega)$ вместо непрерывного выражения (2.4). Использование функции $\rho_{lat}(\omega)$ принимает во внимание эффекты дискретизации во временном направлении и, как результат, существенно улучшает качество фита.

Очевидно, что взаимодействие модифицирует древесную формулу. Тем не менее, из-за асимптотической свободы становится ясно, что эта модификация не слишком велика. В частности, из (2.5) видно, что однопетлевые поправки модифицируют спектральную функцию на фактор, близкий к единице. Используя это наблюдение, в выражении (3.1) мы домножили $\rho_{lat}(\omega)$ на некий фактор A, который эффективно учитывает радиационные поправки на больших частотах. Наши результаты показывают, что введение фактора A критично для успешного описания решёточных данных.

Проблема анзаца (3.1) в том, что он имеет разрыв в точке $\omega = \omega_0$. Без особого труда можно построить спектральную функцию с похожими на

 $^{^1 \}mathrm{Заметим.}$ что частота ω измеряется в физических единицах.

T/T_c	функция	A	ω_0/T	η/s	γ	С	χ^2/dof
	ρ_1	1.108(5)	8.7(4)	0.64(16)	_	—	0.9
0.00	$ ho_2$	1.108(3)	8.5(4)	0.59(13)	3.9(1.5)	_	1.2
0.90	$ ho_3$	1.109(3)	8.5(6)	0.57(25)	_	0.002(53)	1.2
	ρ_1	0.921(3)	8.7(3)	0.49(6)	_	_	1.9
0.025	$ ho_2$	0.921(2)	8.7(3)	0.49(6)	4.7(1.1)	_	2.1
0.325	$ ho_3$	0.921(2)	8.7(7)	0.55(17)	_	-0.003(19)	2.1
	$ ho_1$	0.942(5)	7.7(5)	0.22(9)	_	_	1.0
0.05	$ ho_2$	0.940(4)	7.6(5)	0.20(8)	2.5(1.3)	_	1.5
0.95	$ ho_3$	0.940(8)	7.6(7)	0.24(15)	_	0.002(37)	1.5
	$ ho_1$	0.998(13)	7.3(5)	0.23(3)	_	_	1.8
1.0	$ ho_2$	0.998(13)	7.3(5)	0.21(5)	3.7(8)	_	2.1
1.0	$ ho_3$	0.998(13)	7.3(1.1)	0.24(8)	_	-0.007(65)	2.1
	$ ho_1$	0.927(8)	7.0(7)	0.18(5)	_	_	1.3
11	$ ho_2$	0.927(8)	6.9(6)	0.17(4)	4.1(1.4)	_	1.4
1.1	$ ho_3$	0.927(8)	7.2(1.0)	0.15(5)	_	0.02(3)	1.4
	$ ho_1$	0.819(8)	7.6(4)	0.21(3)	_	_	1.6
19	$ ho_2$	0.818(7)	7.6(5)	0.21(3)	5.4(8)	_	1.8
1.2	$ ho_3$	0.818(9)	7.6(5)	0.22(6)	_	-0.004(28)	1.8
	$ ho_1$	0.932(8)	7.7(5)	0.22(3)	_	_	0.9
1 35	$ ho_2$	0.932(8)	7.7(5)	0.22(3)	2.3(1.0)	_	1.0
1.55	$ ho_3$	0.932(8)	7.9(1.0)	0.20(7)	_	0.01(5)	1.0
	ρ_1	0.932(9)	9.0(4)	0.28(2)	_		1.0
15	ρ_2	0.932(9)	9.0(4)	0.27(2)	2.6(7)] 1.1
1.0	$ ho_3$	0.932(9)	9.1(4)	0.27(7)	_	0.002(31)	1.1

Таблица 1: Параметры функций $\rho_1(\omega)$, $\rho_2(\omega)$, $\rho_3(\omega)$, полученные из фита решёточных данных. Вместо параметра *B* во второй колонке показано отношение $\eta/s = \pi B/s$.

(3.1) свойствами, но без разрыва

$$\rho_2(\omega) = \frac{1}{2} B T^3 \omega \left(1 + \tanh\left[\gamma(w_0 - w)\right] \right) + \frac{1}{2} A \rho_{lat}(\omega) \left(1 + \tanh\left[\gamma(w - w_0)\right] \right).$$
(3.2)

Заметим, что в данном анзаце был введён параметр γ , который определяет ширину области перехода между инфракрасным гидродинамическим режимом и ультрафиолетовым режимом с асимптотической свободой спектральной функции. Очевидно, ширина перехода равна ~ $1/\gamma$.

В функциях (3.1), (3.2) гидродинамика сразу переходит в режим асимптотической свободы. Тем не менее, разумно предположить, что существует область частот, в которой спектральная функция отклоняется от гидродинамики. Для того, чтобы изучить это отклонение, в дополнение к функциям (3.1), (3.2) был использован анзац

$$\rho_3(\omega) = BT^3\omega \left(1 + C\omega^2\right)\theta(\omega_0 - \omega) + A\rho_{lat}(\omega)\theta(\omega - \omega_0).$$
(3.3)

В последней формуле мы ввели поправку к гидродинамическому приближению, которая определяется параметром C. Мы не вводили поправку порядка $\sim \omega^2$, так как это нарушило бы нечётность по частоте. Заметим, что в подходе жёстких термальных петель гидродинамическое поведение на малых частотах заменяется транспортным пиком конечной ширины $\omega \rightarrow \omega/(1+\Gamma\omega^2)$ [14]. Поэтому, функция (3.3) может быть рассмотрена как первый член разложения транспортного пика с $\Gamma = -C$.

Мы фитируем данные $(14 \ge x_0/a \ge 2)$ для каждой температуры по формуле 6.2) спектральными функциями (3.1), (3.2), (3.3). В Таблице 1 показаны параметры функций (3.1), (3.2), (3.3), полученные в результате фитирования. Вместо параметра *B* во второй колонке Таблицы 1 показано отношение η/s , связанное с *B*, как $\eta/s = \pi B/s$.

Несколько комментариев по порядку:

- Из Таблицы 1 видно, что функции (3.1), (3.2), (3.3) фитируют решёточные данные хорошо для всех температур. Также видно, что для всех анзацев отношение η/s быстро падает при приближении температуры к критической точке T_c , и далее либо медленно растёт выше T_c , либо остаётся константой. Такое поведение видно во множестве моделей, направленных на вычисление сдвиговой вязкости КХД.
- Величины η/s, A и ω₀, полученные из фитирования различными анзацами при одной температуры совпадают в пределах ошибок вычислений. Тем не менее, погрешности определения параметров для различных анзацев отличаются.
- Значения порогового параметра ω_0 для всех анзецев хорошо мотивированны физически. Значение сильной константы связи на частоте,

соответствующей переходу, ω_0 ($\omega_0 \sim 2 - 3$ ГэВ в физических единицах) равно $\alpha_s(\omega_0) \sim 0.2 - 0.3$. Это позволяет ожидать, что пертурбативное выражение для спектральной функции применимо для $\omega > \omega_0$. Значения фактора A, который принимает во внимание радиационные поправки, для всех температур близки к единице, что подтверждает применимость асимптотической свободы на больших частотах.

- Заметим также, что, в отличии от инфракрасной части спектральной функции, параметры ультрафиолета определены с очень большой точностью для всех функций. Это свойство возникает из-за существенного вклада ультрафиолета в корреляционную функцию на больших частотах.
- Функция ρ₃(ω) позволяет изучать отклонения от гидродинамического приближения. Это отклонение определяется параметров C. Из Таблицы 1 видно, что в пределах ошибок значения C равны нолю для всех температур. Отсюда следует, что мы не наблюдаем отклонений от гидродинамического приближения.

Стоит упомянуть, что мы пытались фитировать данные спектральными функциями, похожими на $\rho_1(\omega)$, но с другой подстановкой $\omega \to \omega/(1+\Gamma\omega^2)$. Эти подстановки учитывают транспортный пик [14]. Результат этого фита очень блихок к анзацу (3.3). Параметры Γ обнуляются в пределах ошибок вычислений.

Низкочастотные части спектральных функций (3.1) и (3.2) определяются гидродинамической формулой ~ ω . Можно ожидать, что гидродинамическое приближение работает хорошо вплоть до $\omega \leq \pi T \simeq 1$ ГэВ [Meyer(2008c)]. С другой стороны, высокочастотное пертурбатичное выражение для спектральной функции очень точно зафиксировано и работает хорошо вплоть до $\omega \geq \omega_0 \sim 3$ ГэВ. Форма спектральной функции в области 1 GeV $\leq \omega \leq 3$ GeV не ясна. Мы верим, что плохое знание спектральной функции в области 1 GeV $\leq \omega \leq 3$ GeV не ясна. Мы верим, что плохое знание спектральной функции в области 1 GeV $\leq \omega \leq 3$ GeV является основным источником ошибок вычислений, основанных на фитировании решёточных данных функциями $\rho_1(\omega)$ и $\rho_2(\omega)$. Заметим, что этот источник ошибок в значениях вязкости не учтён в Таблице 1.

Функция $\rho_3(\omega)$ модифицирует гидродинамическое приближение в промежуточной области с помощью члена ~ $C\omega^2$. Таким образом, функция $\rho_3(\omega)$, как минимум, частично учитывает неопределённость в сдвиговой вязкости, возникающую из-за плохого знания спектральной функции в промежуточной области. Поэтому мы принимаем результаты для η/s , полученные из анзаца $\rho_3(\omega)$, как результаты этой секции. В дополнение к статистическим неопределённостям в отношении η/s , показанных в Таблице 1, существуют неопределённости, связанные с плотностью энтропии *s* и перенормировочным коэффициентом кловерной дискретизации тензора энергии-импульса (2.7). Первые ошибки порядка 4-6 % для всех рассматриваемых температур. Последние ошибки порядка ~ 3 % на всех температурах $T/T_c \ge 1.0$, ~ 6 % на температурах $T/T_c = 0.925, 0.95$ и ~ 12 % для температуры $T/T_c = 0.9$. Величины отношений η/s , полученные в рамках процедуры фитирования, с учётом всех ошибок, показаны во второй колонке Таблицы 2 и на Рисунке 5.

4 Метод Бакуса-Гильберта для нахождения спектральной функции

В этой секции мы собираемся определить отношение η/s , используя метод Бакуса-Гильберта (БГ) [15, 16]². Этот метод имеет существенное преимущество перед процедурой параметрического фитирования: нет необходимости знать форму спектральной функции для проведения вычислений.

Метод формулируется следующим образом. ³. Необходимо решить уравнение (6.2). Для этого мы переписываем его в виде

$$C(x_i) = \frac{1}{T^5} \int_0^\infty d\omega \frac{\rho(\omega)}{f(\omega)} K(x_i, \omega), \qquad (4.1)$$

где $f(\omega)$ — некоторая функция, обладающая свойством $f(t)|_{t\to 0} \sim t, x_i$ — узлы решётки, в которых проводились вычисления $C(x_i)$ и $K(x,\omega)$ — перескалированное ядро интегрального уравнения

$$K(x,\omega) = f(\omega) \frac{\cosh \omega \left(\frac{1}{2T} - x\right)}{\sinh \frac{\omega}{2T}},$$
(4.2)

Наша цель — определить $\rho(\omega)$. В рамках БГ метода вместо функции $\rho(\omega)$ рассматривается эстиматор $\bar{\rho}(\bar{\omega})$, который записывается как

$$\bar{\rho}(\bar{\omega}) = f(\bar{\omega}) \int_0^\infty d\omega \delta(\bar{\omega}, \omega) \frac{\rho(\omega)}{f(\omega)}, \qquad (4.3)$$

где функция $\delta(\bar{\omega}, \omega)$ называется функцией разрешения. Эта функция имеет пик в районе точки $\bar{\omega}$ и нормирована $\int_0^\infty d\omega \delta(\bar{\omega}, \omega) = 1$. Она раскладывается по ядрам $K(x_i, \omega)$

$$\delta(\bar{\omega},\omega) = \sum_{i} q_i(\bar{\omega}) K(x_i,\omega).$$
(4.4)

³Мы используем обозначения из работы [17, 18]

²В КХД этот метод был недавно использован в работах [17, 18]. Метод Бакуса-Гильберта был также применён в решёточных вычислениях проводимости графена [19].

Для функции разрешения такого вида, эстиматор — линейная комбинация значений корреляционной функции

$$\bar{\rho}(\bar{\omega}) = f(\bar{\omega}) \sum_{i} q_i(\bar{\omega}) C(x_i)$$
(4.5)

Очевидно, для лучшего приближения $\rho(\omega)$ эстиматором $\bar{\rho}(\bar{\omega})$ требуется минимизировать ширину $\delta(\bar{\omega}, \omega)$. Тем не менее, слишком узкий пик будет строить эстиматор, который будет настраиваться на точки, а не на физику, которую они олицетворяют. Это означает, что метод такого рода должен быть регуляризован.

Метод Бакуса-Гильберта нацелен на минимизацию функционала Бакуса-Гильберта $\mathcal{H}(\rho(\omega)) = \lambda \mathcal{A}(\rho(\omega)) + (1 - \lambda)\mathcal{B}(\rho(\omega))$. Слагаемое \mathcal{A} отвечает за ширину функции разрешения (второй момент распределения): $\mathcal{A} = \int_{0}^{\infty} d\omega \delta(\bar{\omega}, \omega) (\omega - \bar{\omega})^{2}$. В принципе, это могла бы быть любая другая функция с похожим физическим смыслом. Преимущество второго момента в том, что он квадратичен по ω и $\bar{\omega}$, что делает возможным аналитическое нахождение минимума функционала.

Слагаемое $\mathcal{B}(\rho(\omega)) = \operatorname{Var}[\rho(\omega)]$ штрафует $\rho(\omega)$ за слишком большую зависимость от данных. В терминах матрицы ковариации S и q-функций, оно имеет вид $\mathcal{B}(\vec{q}) = \vec{q}^T \hat{S} \vec{q}$.

В конце концов, минимизация функционала \mathcal{H} даёт следующие значения коэффициентов:

$$q_{i}(\omega) = \frac{\sum_{j} W_{ij}^{-1}(\bar{\omega}) R(x_{j})}{\sum_{kj} R(x_{k}) W_{kj}^{-1}(\bar{\omega}) R(x_{j})},$$
(4.6)

$$W_{ij}(\bar{\omega}) = \lambda \int_0^\infty d\omega K(x_i, \omega)(\omega - \bar{\omega})^2 K(x_j, \omega) + (1 - \lambda)S_{ij}, \quad (4.7)$$

$$R(x_i) = \int_0^\infty d\omega K(x_i, \omega).$$
(4.8)

Если λ близка к единице, функция разрешения имеет минимальную ширину, и эстиматор даёт лучшее приближение к спектральной функции. Тем не менее, применение метода Бакуса-Гильберта с $\lambda \sim 1$ к поиску сдвиговой вязкости даёт большие ошибки. Ответ становится очень зависимым от данных, спектральная функция оказывается шумной и нестабильной. Статистические ошибки могут быть уменьшены ценой уменьшения ширины функции разрешения за счёт уменьшения параметра λ .

Настало время обсудить выбор функции f(x). Для того, чтобы определить спектральную функцию на малых частотах, разумно выбрать

$$f_1(x) = x \tag{4.9}$$

Рис. 2: Функция разрешения при температуре $T/T_c = 1.35$ и $\bar{\omega} = 0$ для различных значений λ .

В этом случае отношение $\rho(\omega)/f_1(\omega)|_{\omega\to 0} = \eta/\pi$. Главная мотивация для выбора такой функции в том, что она даёт довольно небольшую ширину функции разрешения на малых частотах.

Для изучения спектральной функции на больших частотах мы выбираем

$$f_2(x) = \frac{\rho_{lat}(x)}{(\tanh(x/4T))^2}$$
(4.10)

Можно ожидать, что из-за асимптотической свободы на больших частотах $\omega \gg \Lambda_{QCD}$ отношение $\rho(\omega)/f_2(\omega)$ ведёт себя как константа. Ширина разрешающей функции для $f_2(x)$ больше, чем для $f_1(x)$.

Приступим теперь к вычислению сдвиговой вязкости. Для этого мы используем функцию $f_1(x)$. Параметра λ выбираем равным 0.002. Для такого значения λ ошибки восстановленной спектральной плотности на нулевой частоте меньше 1% для всех рассматриваемых температур. На Рисунке 2 построены функции разрешения на температуре $T/T_c = 1.35$ и $\bar{\omega} = 0$ для различных значений λ . Функции разрешения для других температур очень похожи на изображённые на Рисунке 2 и не показаны здесь.

Рис. 3: Отношения $\bar{\rho}(\bar{\omega})/f_2(\bar{\omega})$ как функции $\bar{\omega}a$ для температур $T/T_c = 0.9, 1.1, 1.35, 1.5$. Красные кривые соответствуют спектральным функциям, восстановленным по методу Бакуса-Гильберта из данных. Синие кривые соответствуют ультрафиолетовому вкладу в виде (4.11), свёрнутому с функцией разрешения. Прерывистые линии — значения констант A с ошибками, полученными из процедуры фитирования.

Из Рисунка 2 видно, что ширина функции разрешения при $\lambda = 0.002$ равняется $\Delta \omega \sim 4T$. Если забыть об ультрафиолетовом вкладе, свёртка спектральной функции $\rho(\omega)$ с функцией разрешения (4.3) даёт среднее спектральной функции по интервалу ширины $\sim 4T$. Можно сказать, что гидродинамическое приближение работает точно вплоть до $\omega \leq \pi T \simeq 1$ ГэВ [Meyer(2008с)], что покрывает большую часть интервала (0, 4T).

Обсудим ультафиолетовый вклад в свёртку (4.3). Согласно разультатам предыдущей секции, ультрафиолетовый вклад начинает играть большую роль, начиная с частот $\omega/T \sim 7-8$. Из Рисунка 2 видно, что функция разрешения подавлена в этой области. Однако нельзя упустить из внимания вклад ультрафиолета, так как спектральная функция на больших частотах растёт очень быстро $\rho(\omega) \sim \omega^4$. Вычисление показывает, что для всех рассматриваемых температур вклад, идущий от ультрафиолетовой части

Рис. 4: Отношение η/s с вычтенным вкладом ультрафиолета как функция порога ω_0 для температур $T/T_c = 0.9, 0.925, 0.95, 1.0, 1.1, 1.5$. Параметр A взят равным центральному значению фита решёточнах данных функцией $\rho_3(\omega)$.

спектральной функции, оказывается больше гидродинамического вклада. Таким образом, для получения разумного результата по сдвиговой вязкости, необходимо вычесть ультрафиолетовый вклад.

Для изучения спектральной функции на больших частотах, предлагается использовать метод БГ с функцией $f_2(\omega)$ и $\lambda = 0.002$. На Рисунке 3 построены отношения $\bar{\rho}(\bar{\omega})/f_2(\bar{\omega})$ как функции $\bar{\omega}a$ для температур $T/T_c = 0.9, 1.1, 1.35, 1.5$. Для других температур графики похожи и не показаны здесь. Красные кривые соответствуют спектральным функциям, восстановленным БГ методом из данных. Для сравнения этих результатов с полученными в прошлой секции, была взята спектральная функция на больших частотах

$$\rho_{ult}(\omega) = A\rho_{lat}(\omega)\theta(\omega - \omega_0), \qquad (4.11)$$

и свёрнута с функцией разрешения. Значения A и ω с ошибками были взяты из процедуры фитирования (см. Таблицу 1). Результаты изображены синими кривыми. Наконец, мы построили штрихованные линии, соответствующие значениям констант A с ошибками, полученными из процедуры фитирования.

Теперь несколько комментариев по порядку:

• Из Рисунка 3 видно, что красные кривые можно разделить на две части. Первая часть — спектральная функция на малых частотах

 $\bar{\omega}a \leq 0.5 \ (\bar{\omega}T \leq 8)$. Можно сказать, что здесь спектральная функция находится в инфракрасной области. После $\bar{\omega}a \sim 0.5 \ (\bar{\omega}T \sim 8)$ происходит переход во второй режим, где спектральная функция близка к ультрафиолетовой асимптотике, определяемой параметром A.

- Также ясно из Рисунка 3, что поведение синих кривых, представляющее ультрафиолетовый вклад в отношение \(\overline{\alpha}\) (\overline{\alpha}) / f_2(\overline{\alpha}), похоже на поведение красных кривых. В ультрафиолетовой области красные и синие кривые близки. Переход из ультрафиолетового в инфракрасный режим происходит вблизи той же области по \(\overline{\alpha}\) a.
- В инфракрасной области красные кривые выше синих. Разница обусловлена вкладом в спектральную функцию на малых частотах. Видно, что разница уменьшается с температурой. Если вспомнить, что сдвиговая вязкость связана со спектральной функцией в области низких частот, можно утверждать, что вязкость спадает с температурой. Наши результаты предполагают, что плотность энтропии *s* падает с температурой быстрее, чем сдвиговая вязкость. Как результат, отношение η/s растёт ниже T_c.
- Из Рисунка 3 видно, что в ультрафиолетовой области восстановленная спектральная функция — медленно меняющаяся функция от $\bar{\omega}a$. Отклонение от асимптотического значения A, полученного в рамках процедуры фитирования, мало для всех температур. Для большинства температур отклонение составляет несколько процентов. Отклонение восстановленной спектральной функции от асимптотического значения A может быть обусловлено радиационными поправками к древесной спектральной функции, которые более сложны, чем просто константа.

Исследование, проведённое в этом разделе, позволяет утверждать, что формуле (4.11) описывает ультрафиолетовую часть спектральной функции с хорошей точностью. Поэтому ниже мы используем (4.11) как модель для ультрафиолетовой части спектральной функции. Значение константы A будет определено из вариации восстановленного отношения $\bar{\rho}(\bar{\omega})/f_2(\bar{\omega})$ в области $\bar{\omega}a \in (1.5, 3)$. Этот интервал выбран потому, что вклад инфракрасной части в спектральную функцию здесь мал, и отношения $\bar{\rho}(\bar{\omega})/f_2(\bar{\omega})$ для всех температур в ультрафиолетовом режиме. Значения констант A, определённых таким способом, находятся в согласии с полученными в результате фитирования.

В дополнение к константе A, ультрафиолетовая часть (4.11) зависит от порогового параметра ω_0 . Поэтому, если вычитать ультрафиолетовый вклад в виде (4.11), отношение η/s , полученное методом БГ, будет зависеть от значения ω_0 . Для изучения этой зависимости на Рисунке 4 построено отношение η/s как функция ω_0 для температур $T/T_c = 0.9, 0.925, 0.95, 1.0, 1.1, 1.5$. Кривые для температур $T/T_c = 1.2, 1.35$ близки к кривой для $T/T_c = 1.5$, поэтому эти температуры не показаны на графике. Параметр A взят равным центральному значению фита решёточных данных функцией $\rho_3(\omega)$ (см. Таблицу 1). Из Рисунка 4 видно, что по мере роста температуры растёт наклон кривых и спадает зависимость η/s от порогового параметра ω_0 . Зависимость η/s от ω_0 мала ля температур $T/T_c \ge 1.0$ и повышается на температурах $T/T_c < 1.0$. Самая большая зависимость η/s от ω_0 наблюдается при $T/T_c = 0.9$. Мы верим, что это свойства исходит из уже упомянутого факта: сдвиговая вязкость глюодинамики спадает с температурой и извлечение вязкости из наблюдаемых, содержащих ультрафиолетовый вклад, становится всё более и более сложной задачей по мере уменьшения температуры.

К сожалению, не до конца ясно, как определить значение порогового параметра ω_0 в рамках метода Бакуса-Гильберта. Заметим, однако, что положение перехода из инфракрасного в ультрафиолетовый режим (см. Рисунок 3) совпадает для восстановленной спектральной функции и для функции (4.11) с ω_0 , полученным в рамках фитирования. Также заметим, что значения параметра A, полученные в марках метода БГ и процедуры фитирования находятся в согласии. Поэтому можно ожидать, что процедура фитирования даёт хорошее приближение ко значению ω_0 , и можно использовать его для модели ультрафиолетового вклада.

Вычитания ультрафиолетового вклада из отношения η/s в виде (4.11), мы получаем результаты этого раздела. Они показаны в третьей колонке Таблицы 2 и на Рисунке 5. Ошибки, показанные в Таблице 2 и на Рисунке 5, возникают из-за неопределённостей в A, ω_0 , плотности энтропии sи перенормировочной константы тензора энергии-импульса (см. предыдущий раздел). Из Таблицы 2 и Рисунка 5 можно видеть, что результаты, полученные в рамках двух подходах находятся в согласии.

В дополнение к результатам, полученным в этой работе, на Рисунке 5 построены результаты, полученные в работах [Nakamura and Sakai(2005), Meyer(2007), 12]. Видно, что наши результаты находятся в согласии с предыдущими исследованиями.

Также интересно изобразить результаты работы [11]. В этой работе авторы вычислили сдвиговую вязкость в теории Янга-Миллса, используя точное диаграммное представление в терминах полных пропагаторов и вершин, используя глюонные спектральные функции как внешний вход. Наши результаты также в согласии с этой работой.

На Рисунке 5 мы также строим значение отношения η/s для N=4 СЯМ теории в режиме сильной связи

 $\eta/s = 1/4\pi$ [Policastro et al.(2001)Policastro, Son, and Starinets] и результаты пертурбативного вычисления η/s . Пертурбативные результаты были получены следующим способом: масштаб Λ в бегущей константе связи глюодинамики был взят [20]. Плотность энтропии *s* была взята в од-

Рис. 5: Отношение η/s в глюодинамике для различных температур. Круглые точки соответствуют результатам, полученным в рамках фитирования, а красные квадраты — методу БГ. Также мы показываем предыдущие решёточные результаты, полученные А. Nakamura, S. Sakai в [Nakamura and Sakai(2005)] (жёлтые звёзды), H.Meyer в [Meyer(2007)] (чёрные шестиугольники) и S. Mages, S. Borsnyi, Z. Fodor, A. Schfer, K. Szab в [12] (зелёные звёзды). В дополнение построен результат N = 4 СЯМ в режиме сильной связи $\eta/s = 1/4\pi$ [Policastro et al.(2001)Policastro, Son, and Starinets] (сплошная чёрная линия), результат пертурбативных вычислений η [7] (красная область) и результат, полученный N. Christiansen, M. Haas, J.M. Pawlowski, N. Strodthoff в работе [11] (фиолетовая кривая).

нопетлевом приближении [21]. Мы взяли пертурбативные результаты для сдвиговой вязкости во втором порядке из работы [7]. Для оценки неопределённости пертурбативных результатов мы меняли масштаб в области от первой до второй Мацубаровской частоты $\mu \in (2\pi T, 4\pi T)$. Сравнивая наши результаты с другими подходами, можно сделть вывод, что в рамках температурного региона $T/T_c \in [0.9, 1.5]$, SU(3)-глюодинамика проявляет свойства сильновзаимодействующей системы, которая не может быть описана пертурбативно, и имеет отношение η/s , близкое к $1/4\pi$ в N = 4 суперсимметричной теории Янга-Миллса.

5 Объёмная вязкость: введение

Учитывая успех гидродинамического описания столкновений тяжёлых ионов, очень важно вычислить сдвиговую и объёмную вязкость кварк-глюонной плазмы в области $T_c \leqslant T \leqslant 3T_c$, важной для эксперимента RHIC и последующих экспериментов БАК. В этой главе проводится вычисление температурной зависимости объёмной вязкости $\zeta SU(3)$ -глюодинамики. Вычисление опирается на формулу Кубо и на восстановление временной спектральной функции из евклидового коррелятора аномалии следа. Численно это сложная задача, и в этом случае объёмная вязкость более предпочтительна, чем сдвиговая на больших температурах, так как спектральная функция должна быть строго гладкой в пределе $T \to +\infty$. Это связано с фактом, что объёмная вязкость исчезает в конформной теории поля, а неабелевы калибровочные теории становятся конформными на больших энергиях, так как пропадает взаимодействие.

Недавно было предположено, что, в силу правила сумм, решёточных данных по $\epsilon - 3P$ и простой модели, объёмная вязкость резко возрастает при приближении к точке фазового перехода первого рода. Это следует отметить, так как газ безструктурных точечных частиц имеет пренебрежимо малую объёмную вязкость как в нерелятивистском, так и в ультрарелятивистском пределах, и объёмной вязкостью часто пренебрегают, так как во внимание принимается сдвиговая вязкость. Кроме того, результат КХД в лидирующем приближении численно очень мал: $\zeta/s = 0.02\alpha_s^2$ при $N_f = 0$. Это удовлетворяет соотношению $\zeta \approx 15\eta(1/3 - v_s^2)^2$, где v_s — скорость звука в среде. Напротив, AdS/CFT вычисления, учитывающие отклонения от конформности в сильной связи, говорят $\zeta = \eta(1/3 - v_s^2)$. Эти формулы указывают на то, что динамика, ответственная за объёмную вязкость вдали от конформности $(v_s^2 < 1/3)$ отличается в режимах сильной и слабой связи.

Мы покажем, что ζ/s сильно зависит от температуры, мы также получим некоторые знания о спектральной функции из первых принципов, что поможет описать это неожиданное поведение.

6 Объёмная вязкость: вычисление

Объёмная вязкость связана с Евклидовой корреляционной функцией тензора энергии-импульса $T_{\mu\nu} = \frac{1}{4} \delta_{\mu\nu} F^a_{\alpha\beta} F^a_{\alpha\beta} - F^a_{\mu\alpha} F^a_{\nu\alpha} + \delta_{\mu\nu} \theta$:

$$C_{\theta}(x_0) = T^{-5} \int d^3 \mathbf{x} \langle \theta(0,0)\theta(x_0,\mathbf{x}) \rangle, \qquad (6.1)$$

где T — температура системы. Корреляционная функция (6.1) может быть записана в терминах спектральной функции $\rho(\omega)$

$$C_{\theta}(x_0) = T^{-5} \int_0^\infty \rho_{\theta}(\omega) \frac{\cosh \omega (\frac{1}{2T} - x_0)}{\sinh \frac{\omega}{2T}} d\omega.$$
(6.2)

Спектральная функция содержит ценную информацию о свойствах среды. Для того, чтобы найти объёмную вязкость, используется формула Кубо [Kubo(1957)]

$$\zeta = \frac{\pi}{9} \left(\frac{d\rho_{\theta}(\omega)}{d\omega} \right)_{\omega=0}.$$
(6.3)

Рис. 6: Корреляционные функции $C_{\theta}(x_0)$ для температур $T/T_c = 0.9, 1.0, 1.35, 1.5.$

Были измерены корреляционные функции $C_{\theta}(x_0)$ на решётке 16×32^3 при температурах $T/T_c \simeq 0.9, 0.925, 0.95, 1.0, 1.1, 1.2, 1.35, 1.5$. Применение двухуровнего алгоритма позволила нам получить ошибки не более, чем $\sim 2-3\%$ на расстоянии $Tx_0 = 1/2$ для всех рассматриваемых температур. Для остальных точек точность ещё выше. На Рис. 6 построены корреляционные функции для нескольких температур.

Следующий шаг вычисления сдвиговой вязкости — нахождение спектральной функции из интегрального уравнения (6.2). В этом разделе мы используем фитирование по методу средней точки, в дальшейшем предполагается использование физически мотивированных анзацев и метода Бакуса-Гильберта. Метод средней точки основан на предположении, что коррелятор определяется доминирующим вкладом гидродинамики, т.е. спектральной функции на малых частотах. Таким образом, если положить $\rho_{\theta}(\omega) = (9\zeta/\pi)\omega$, мы сразу получаем $C_{\theta}(1/2T) = 9\pi\zeta(T)$.

Рис. 7: Зависимость ζ/T_c^4 , полученная методом средней точки, от температуры.

На Рис. 7 показана зависимость объёмной вязкости от температуры. Хорошо виден пик в окрестности T_c , как и ожидалось. На Рис. 8 показано отношение ζ/s , а на рисунке Рис. 9 — сравнение с существующими результатами.

7 Обсуждение и выводы

Эта работа направлена на изучение температурной зависимости сдвиговой и объёмной вязкости SU(3)-глюодинамики в рамках решёточного моделирования. Конкретно, мы измерили корреляционные функции тензора энергии-импульса на решётке 16×32^3 на температурах в диапазоне $T/T_c \in [0.9, 1.5]$. Для получения малых ошибок мы использовали двухуровневый алгоритм, позволивший нам добиться ошибок не более, чем $\sim 2-3\%$ на расстоянии $Tx_0 = 0.5$ для всех рассматриваемых температур. На остальных точках точность ещё выше.

Используя решёточные данные о корреляционных функциях, мы вычислили отношения η/s для всех рассматриваемых температур. Для этого

Рис. 8: Зависимость ζ/s, полученная методом средней точки, от температуры.

Рис. 9: Зависимость ζ/s, полученная методом средней точки, от температуры. Красными точками показаны наши данные, остальные точки — сравнение с существующими результатами.

был использован физически мотивированный анзац спектральной функции с неизвестными параметрами, которые были определены с помощью фитирования. Все анзацы имели различные проблемы с интерполяцией между гидродинамикой на малых частотах и асимптотической свободой на больших, хотя все они хорошо фитируют решёточные данные на всех температурах. Другой метод вычисления η/s — метод Бакуса-Гильберта.

T/T_c	η/s , глюодинамика	η/s , глюодинамика	$\eta/s, QCD_{N_f=3}$
	фитирование	БГ метод	
0.90	0.57(28)	0.50(24)	0.59(28)
0.925	0.55(18)	0.52(25)	0.61(30)
0.95	0.24(15)	0.22(12)	0.26(14)
1.0	0.24(8)	0.20(12)	0.24(14)
1.1	0.15(5)	0.17(6)	0.21(7)
1.2	0.22(6)	0.21(4)	0.26(5)
1.35	0.20(7)	0.22(6)	0.28(7)
1.5	0.27(7)	0.28(8)	0.36(10)

Таблица 2: Отношение η/s для различных температур, полученное различными методами. Результаты для глюодинамики, полученные с помощью фитирования, показаны во второй колонке. Результаты для глюодинамики, полученные в рамках метода БГ, изображены в третьей колонке. Оценка отношения η/s для КХД с $N_f = 3$ кварками представлена в четвёртой колонке.

В Таблице 2 и на Рисунке 5 показаны результаты этой работы. Из Таблицы 2 и Рисунка 5 видно, что результаты, полученные в рамках двух методов совпадают.

В дополнение к Рисунку 5 были построены решёточные результаты, полученные в работах [Nakamura and Sakai(2005), Meyer(2007), 12]. Видно, что наши результаты в согласии с предыдущими вычислениями. На Рисунке 5 также построено значение η/s в N = 4 СЯМ теории в режиме сильной связи $\eta/s = 1/4\pi$ и результаты пертурбативного вычисления η/s . Сравнивая наши результаты с другими подходами, можно сделать вывод, что отношение η/s в глюодинамике близко к N = 4 СЯМ и не может быть описано пертурбативно.

Также стоит отметить результаты работы [11], в которой авторы вычислили сдвиговую вязкость в теории Янга-Миллса, используя точное диаграммное представление в терминах полных пропагаторов и вершин, используя глюонные спектральные функции как внешний вход. Наши результаты в согласии с этой работой.

На данный момент невозможно провести решёточные измерения сдвиговой вязкости КХД с динамическими фермионами. Однако можно оценить отношение η/s , используя формулу

$$(\eta/s)_{QCD} = \frac{(\eta/s)_{QCD}}{(\eta/s)_{YM}} \times (\eta/s)_{YM}$$
(7.1)

Отношение $(\eta/s)_{YM}$ вычислено в этой работе в то время, как отношение $\left(\frac{\eta}{s}\right)_{QCD} / \left(\frac{\eta}{s}\right)_{YM}$ для $N_f = 3$ кварков было оценено в работе [11]. Для $(\eta/s)_{YM}$ мы использовали результаты, полученные методом Бакуса-Гильберта. Наши результаты для отношения $(\eta/s)_{QCD}$ показаны в Таблице 2 и на Рисунке 10. В дополнение к Рисунку 10 были построены оценки η/s , полученные в рамках различных моделей: NJL [9], метод динамических квазичастиц [10], результат работы [11] и N = 4 СЯМ. Наконец, на Рисунке 10 изображены серые области, показывающие экспериментальное ограничение на отношение η/s , полученное из экспериментальных данных [5]. Видно, что результаты, полученные в нашей работе, согласуются с экспериментом.

Кроме данных по сдвиговой вязкости в работе представлены предварительные данные по объёмной вязкости. Её вычисления осложняются тем, что в корреляторе гидродинамический и ультрафиолетовый вклады обладают равной силой.

Рис. 10: Отношение η/s в КХД для различных температур. Красные квадраты — оценка η/s в КХД, полученная из данной работы. Зелёная кривая — результат NJL модели [9], фиолетовая кривая — результат подхода динамических квазичастиц [10], синяя кривая — результат работы [11] и чёрная кривая — результат N = 4 СЯМ. В дополнение изображена серая область, показывающая экспериментальное ограничение на отношение η/s , полученное в эксперименте [5].

Список литературы

- P. F. Kolb and U. W. Heinz, In *Hwa, R.C. (ed.) et al.: Quark gluon plasma* 634-714 [nucl-th/0305084].
- [2] J. Y. Ollitrault, Eur. J. Phys. 29, 275 (2008) doi:10.1088/0143-0807/29/2/010 [arXiv:0708.2433 [nucl-th]].
- [3] K. H. Ackermann *et al.* [STAR Collaboration], Phys. Rev. Lett. 86, 402 (2001) doi:10.1103/PhysRevLett.86.402 [nucl-ex/0009011].
- [4] C. Adler *et al.* [STAR Collaboration], Phys. Rev. C 66, 034904 (2002) doi:10.1103/PhysRevC.66.034904 [nucl-ex/0206001].
- [5] H. Song, Nucl. Phys. A **904-905**, 114c (2013) doi:10.1016/j.nuclphysa.2013.01.052 [arXiv:1210.5778 [nucl-th]].
- [Policastro et al.(2001)Policastro, Son, and Starinets] G. Policastro, D. T. Son, and A. O. Starinets, Phys. Rev. Lett. 87, 081601 (2001), hep-th/0104066.
- [6] P. B. Arnold, G. D. Moore and L. G. Yaffe, JHEP 0011, 001 (2000) doi:10.1088/1126-6708/2000/11/001 [hep-ph/0010177].
- [7] P. B. Arnold, G. D. Moore and L. G. Yaffe, JHEP 0305, 051 (2003) doi:10.1088/1126-6708/2003/05/051 [hep-ph/0302165].
- [8] V. Ozvenchuk, O. Linnyk, M. I. Gorenstein, E. L. Bratkovskaya and W. Cassing, Phys. Rev. C 87, no. 6, 064903 (2013) doi:10.1103/PhysRevC.87.064903 [arXiv:1212.5393 [hep-ph]].
- [9] R. Marty, E. Bratkovskaya, W. Cassing, J. Aichelin and H. Berrehrah, Phys. Rev. C 88, 045204 (2013) doi:10.1103/PhysRevC.88.045204 [arXiv:1305.7180 [hep-ph]].
- [10] H. Berrehrah, E. Bratkovskaya, T. Steinert and W. Cassing, Int. J. Mod. Phys. E 25, no. 07, 1642003 (2016) doi:10.1142/S0218301316420039
 [arXiv:1605.02371 [hep-ph]].
- [11] N. Christiansen, M. Haas, J. M. Pawlowski and N. Strodthoff, Phys. Rev. Lett. 115, no. 11, 112002 (2015) doi:10.1103/PhysRevLett.115.112002
 [arXiv:1411.7986 [hep-ph]].
- [Karsch and Wyld(1987)] F. Karsch and H. W. Wyld, Phys. Rev. **D35**, 2518 (1987).
- [Nakamura and Sakai(2005)] A. Nakamura and S. Sakai, Phys. Rev. Lett. **94**, 072305 (2005), hep-lat/0406009.

- [Meyer(2007)] H. B. Meyer, Phys. Rev. **D76**, 101701 (2007), 0704.1801.
- [Meyer(2009a)] H. B. Meyer, Nucl. Phys. A830, 641C (2009a), 0907.4095.
- [12] S. W. Mages, S. BorsΓЎnyi, Z. Fodor, A. SchΓ¤fer and K. SzabΓi, PoS LATTICE 2014, 232 (2015).
- [Braguta and Kotov(2013)] V. V. Braguta and A. Yu. Kotov, JETP Lett. 98, 127 (2013).
- [13] N. Y. Astrakhantsev, V. V. Braguta and A. Y. Kotov, JHEP **1509**, 082 (2015) doi:10.1007/JHEP09(2015)082 [arXiv:1507.06225 [hep-lat]].
- [Kubo(1957)] R. Kubo, J. Phys. Soc. Jap. **12**, 570 (1957).
- [Meyer(2003)] H. B. Meyer, JHEP **01**, 048 (2003), hep-lat/0209145.
- [Meyer(2008a)] H. B. Meyer, JHEP **08**, 031 (2008a), **0806.3914**.
- [Kataev et al.(1982)Kataev, Krasnikov, and Pivovarov] A. L. Kataev, N. V. Krasnikov, and A. A. Pivovarov, Nucl. Phys. B198, 508 (1982), [Erratum: Nucl. Phys.B490,505(1997)], hep-ph/9612326.
- [Engels et al.(2000)Engels, Karsch, and Scheideler] J. Engels, F. Karsch, and T. Scheideler, Nucl. Phys. B564, 303 (2000), hep-lat/9905002.
- [Meyer(2011)] H. B. Meyer, Eur. Phys. J. A47, 86 (2011), 1104.3708.
- [Meyer(2008b)] H. B. Meyer, Nucl. Phys. **B795**, 230 (2008b), 0711.0738.
- [Shifman et al.(1979)Shifman, Vainshtein, and Zakharov] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. **B147**, 385 (1979).
- [14] G. Aarts and J. M. Martinez Resco, JHEP 0204, 053 (2002) [hepph/0203177].
- [Meyer(2008c)] H. B. Meyer, PoS LATTICE2008, 017 (2008c), 0809.5202.
- [15] G. Backus and F. Gilbert, Geophysical Journal of the Royal Astronomical Society 16, 169205.
- [16] G. Backus and F. Gilbert, Philosophical Transactions of the Royal Society of London A : Mathematical, Physical and Engineering Sciences 266, 123-192.
- [17] B. B. Brandt, A. Francis, H. B. Meyer and D. Robaina, Phys. Rev. D 92, no. 9, 094510 (2015) doi:10.1103/PhysRevD.92.094510 [arXiv:1506.05732 [hep-lat]].

- [18] B. B. Brandt, A. Francis, B. Jäger and H. B. Meyer, Phys. Rev. D 93, no. 5, 054510 (2016) doi:10.1103/PhysRevD.93.054510 [arXiv:1512.07249 [hep-lat]].
- [19] D. L. Boyda, V. V. Braguta, M. I. Katsnelson and M. V. Ulybyshev, Phys. Rev. B 94, 085421 (2016) doi:10.1103/PhysRevB.94.085421 [arXiv:1601.05315 [cond-mat.str-el]].
- [20] S. Capitani, M. LΓjscher, R. Sommer and H. Wittig, Nucl. Phys. B 544, 669 (1999) Erratum: [Nucl. Phys. B 582, 762 (2000)] doi:10.1016/S0550-3213(00)00163-2, 10.1016/S0550-3213(98)00857-8 [hep-lat/9810063].
- [21] J. I. Kapusta, C. Gale, Finite-Temperature Field Theory Principles and Applications, (Cambridge university press, New York, 2006)