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Supersymmetric generalization of the Matsuo-Cherednik
correspondence

June 8, 2019

Abstract

In this thesis the Matsuo-Cherednik like correspondence between the quantum n-body
Ruijsenaars-Schneider model and the quantum Knizhnik-Zamolodchikov equations related
to supergroupGL(N |M) was described. The spectrum of the Ruijsenaars-Schneider Hamil-
tonians is shown to be independent of the fermionic grading for a fixed value of N+M,
so that N+M+1 different qKZ systems of equations lead to the same n-body quantum
problem. The obtained results can be viewed as quantization of the previously described
quantum-classical correspondence between the classical n-body Ruijsenaars-Schneider model
and the supersymmetric GL(N |M) spin chains on n sites.
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1 Introduction

The KZ-Calogero and qKZ-Ruijsenaars correspondences are the Matsuo-Cherednik type con-
structions [13, 11, 19, 20] for solutions of the Calogero-Moser-Sutherland [5] and Ruijsenaars-
Schneider [15] quantum problems by means of solutions of the Knizhnik-Zamolodchikov (KZ)
[9] and quantum Knizhnik-Zamolodchikov (qKZ) equations [12] respectively. Consider, for ex-
ample, the qKZ equations1 related to the Lie group GL(K):

eη~∂xi
∣∣∣Φ〉 = K

(~)
i

∣∣∣Φ〉, i = 1, . . . , n (1.1)

K
(~)
i = Ri i−1(xi−xi−1+η~) . . .Ri1(xi−x1+η~)g(i)Rin(xi−xn) . . .Ri i+1(xi−xi+1) , (1.2)

where g = diag(g1, . . . , gK) is a diagonal K×K (twist) matrix, and g(i) acts by g multiplication
in the i-th tensor component of the Hilbert space V = (CK)⊗n. The quantum R-matrices Rij are
in the fundamental representation of GL(K). They act in the i-th and j-th tensor components of
V and satisfy the quantum Yang-Baxter equation, which guarantees compatibility of equations
(1.1). The twist matrix g is the symmetry of Rij: g(i)g(j)Rij = Rijg

(i)g(j). In the rational case
we deal with the Yang’s R-matrix [18]:

Rij(x) =
xI + ηPij

x+ η
, (1.3)

where I is identity operator in End(V), and Pij is the permutation operator, which interchanges
the i-th and j-th tensor components in V . The operators2

Ma =
n∑
l=1

e(l)aa (1.4)

1The quantum R-matrices entering (1.2) are assumed to be unitary: Rij(x)Rji(−x) = id.
2The set {eab | a, b = 1...K} is the standard basis in Mat(K,C): (eab)ij = δiaδjb.
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commute with K
(~)
i and provide the weight decomposition of the Hilbert space V into the direct

sum
V = V ⊗n =

⊕
M1,...,MK

V({Ma}) (1.5)

of eigenspaces of operators Ma with the eigenvalues Ma ∈ Z≥ 0, a = 1, . . . , K: M1+. . .+MK = n.
Using the standard basis {ea} in CK introduce the basis vectors in V({Ma}) as the vectors∣∣∣J〉 = ej1 ⊗ ej2 ⊗ . . .⊗ ejn , (1.6)

where the number of indices jk such that jk = a is equal to Ma for all a = 1, . . . , K. The dual

vectors
〈
J
∣∣∣ are defined in a way that

〈
J
∣∣∣J ′〉 = δJ,J ′ .

Then the statement of the qKZ-Ruijsenaars correspondence is as follows [20]. For any solution

of the qKZ equations (1.1)
∣∣∣Φ〉 =

∑
J

ΦJ

∣∣∣J〉 from the weight subspace V({Ma}) the function

Ψ =
∑
J

ΦJ , ΦJ = ΦJ(x1, ..., xn) (1.7)

or
Ψ =

〈
Ω
∣∣∣Φ〉 , 〈

Ω
∣∣∣ =

∑
J : |J>∈V({Ma})

〈
J
∣∣∣ (1.8)

with the property 〈
Ω
∣∣∣Pij =

〈
Ω
∣∣∣ (1.9)

is an eigenfunction of the Macdonald operator:

n∑
i=1

n∏
j 6=i

xi−xj+η
xi − xj

Ψ(x1, . . . , xi+η~, . . . , xn) = EΨ(x1, . . . , xn) , E =
K∑
a=1

Maga . (1.10)

The eigenvalues of the higher rational Macdonald-Ruijsenaars Hamiltonians

Ĥd =
∑

I⊂{1,...,n},|I|=d

( ∏
s∈I,r 6∈I

xs − xr + η

xs − xr

)∏
i∈I

eη~∂xi (1.11)

are given by the elementary symmetric polynomial of n variables ed(g1, . . . , g1︸ ︷︷ ︸
M1

, . . . gN , . . . , gK︸ ︷︷ ︸
MK

).

QC-duality. Using the asymptotics of solutions to the (q)KZ equations [16] it was also argued
in [19, 20] that the qKZ-Ruijsenaars correspondence can be viewed as a quantization of the
quantum-classical duality [2, 8, 3] (see also [14, 6]), which relates the generalized inhomogeneous
quantum spin chains and the classical Ruijsenaars-Schneider model. Consider the classical K-
body Ruijsenaars-Schneider model, where the positions of particles {xi} are identified with the
inhomogeneous parameters of the spin chain which is described by its transfer-matrix

T(x) = tr0

(
R̃0n(x− xn) . . . R̃02(x− x2)R̃01(x− x1)(g ⊗ I)

)
(1.12)

with

R̃(x) =
x+ η

x
R(x) = I +

η

x
P. (1.13)
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The quantum spin chain Hamiltonians are defined as follows:

Hi = Res
x=xi

T(x) = R̃i i−1(xi−xi−1) . . . R̃i1(xi−x1)g(i)R̃in(xi−xn) . . . R̃i i+1(xi−xi+1). (1.14)

Therefore,

Hi = K
(0)
i

n∏
j 6=i

xi − xj + η

xi − xj
, K

(0)
i = K

(~)
i |~=0 . (1.15)

Identify also the generalized velocities {ẋi} with the eigenvalues of (1.14). Then the action
variables {Ii| i = 1, ..., K} of the classical model are given by the values of g1, ..., gK with
multiplicities M1, ...,MK :

{Ii| i = 1, ..., K} =
{
g1, . . . , g1︸ ︷︷ ︸

M1

, . . . gN , . . . , gK︸ ︷︷ ︸
MK

}
. (1.16)

See details in [8], where this statement was proved using the algebraic Bethe ansatz technique.

QC-correspondence. On the other hand the quantum-classical duality possesses a general-
ization to the so-called quantum-classical correspondence [17], where the classical Ruijsenaars-
Schneider model is related not to a single spin chain but to the set of K + 1 supersymmetric
spin chains [10] with supergroups

GL(K| 0) , GL(K − 1| 1) , ... ,GL(1|K − 1) , GL(0|K) . (1.17)

More precisely, it was shown in [17] that the previous statement (1.16) is valid for all supersym-
metric chains with groups (1.17).

The aim of the thesis is to quantize the (supersymmetric) quantum-classical correspondence,
that is to establish supersymmetric version of the qKZ-Ruijsenaars correspondence for the qKZ
equations related to the supergroups GL(N |M). We construct generalizations of the vector〈

Ω
∣∣∣ (1.8) and show that the quantum K-body Ruijsenaars-Schneider model follows from all

K + 1 qKZ systems of equations related to supergroups GL(N |M) with N + M = K (1.17).

The skew-symmetric vectors
〈

Ω−

∣∣∣ with the property
〈

Ω−

∣∣∣Pij = −
〈

Ω−

∣∣∣ (instead of symmetric

vector (1.9)) are described as well. They lead to the Ruijsenaars-Schneider model with different
sign of the coupling constant η and ~.

The thesis is organized as follows. For simplicity we start with the rational KZ-Calogero
correspondence. Then we proceed to the rational and trigonometric qKZ-Ruijsenaars relations.
Most of notations are borrowed from [19, 20, 17]. We briefly describe the notations and defini-
tions related to the graded Lie algebras (groups) in the Appendix.
The results of this Master’s thesis are published in the article [1].
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2 SUSY KZ-Calogero correspondence

The rational Knizhnik-Zamolodchikov (KZ) equations [9] have the form

~∂xi
∣∣∣Φ〉 =

(
g(i) + κ

n∑
j 6=i

Pij

xi − xj

)∣∣∣Φ〉 , (2.1)

where
∣∣∣Φ〉 =

∣∣∣Φ〉(x1, . . . , xn) belongs to the tensor product V = V ⊗ V ⊗ . . . ⊗ V = V ⊗n of

the vector spaces V = CN |M , Pij is the (graded) permutation operator (A.7) of the i-th and
j-th tensor components, g = diag(g1, . . . , gN+M) is a diagonal (N + M)×(N + M) matrix and
g(i) is the operator in V acting as g on the i-th component (and identically on the rest of the
components). The operators

Hi = g(i) + κ
n∑
j 6=i

Pij

xi − xj
(2.2)

form the commutative set of Gaudin Hamiltonians [7]. Similarly to non-supersymmetric case
they also commute with the operators:

Ma =
n∑
l=1

e(l)aa , (2.3)

where eab are basis elements of End(CN |M) (A.2)-(A.4). In what follows we restrict ourselves to
the subspace V({Ma}) corresponding to a component of decomposition (1.5) with the fixed set
of eigenvalues Ma for the operators Ma. We choose a basis in V({Ma}):∣∣∣J〉 = ea1 ⊗ ea2 ⊗ . . .⊗ ean =

∣∣∣a1...an〉,
where the number of indices ak such that ak = a is equal to Ma for all a = 1, . . . , N + M . A
general solution acquires the following form:∣∣∣Φ〉 =

∑
J

ΦJ

∣∣∣J〉 , (2.4)

where the coefficients ΦJ are functions of all parameters entering (2.1).

To proceed further we need to find a vector〈
Ω
∣∣∣ =

∑
J

〈
J
∣∣∣ΩJ (2.5)

similar to (1.8) with the property 〈
Ω
∣∣∣Pij =

〈
Ω
∣∣∣ , (2.6)

where in contrast to (1.9) the permutation operator Pij acts in the graded space (A.7). Having
such a vector and taking into account the identities (A.12) and (A.13) we can repeat all the
calculations from [19] without any changes. They lead to the eigenvalue equation for the second
Calogero-Moser Hamiltonian:(

~2
n∑
i=1

∂2xi −
n∑
i 6=j

κ(κ− ~)

(xi − xj)2

)
Ψ = EΨ , (2.7)
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where
Ψ =

〈
Ω
∣∣∣Φ〉 =

∑
J

ΩJΦJ (2.8)

and

E =
N+M∑
a=1

Mag
2
a . (2.9)

Let us construct the vector
〈

Ω
∣∣∣. Due to (A.9) the basis vector

〈
J
∣∣∣ entering

〈
Ω
∣∣∣ con not

contain two identical fermions (ea with p(a) = 1). Otherwise, we get a contradiction with (2.6).

Keeping this in mind choose a vector
∣∣∣J〉 with a1 ≤ a2 ≤ ... ≤ an from V({Ma}), and fix the

coefficient Ωa1≤a2≤...≤an = 1 for this set. Next, generate the rest of vectors
∣∣∣J〉 by the rule that

the permutation of two nearby indices multiplies the coefficient by the standard parity factor:

Ωa1 a2...am+1 am...an = (−1)p(am)p(am+1)Ωa1 a2...am am+1...an (2.10)

By repeating this procedure and summing up all the resultant vectors
∣∣∣J〉 (in the orbit of the

action of permutation operators with the corresponding coefficients ΩJ) we get the final answer

for
∣∣∣Ω〉. Here are some examples.

Example 2.1 Let N +M = 2, n = 3, M1 = 2,M2 = 1. Then at least one of the states (among
e1 and e2) is bosonic. Therefore, ∣∣∣Ω〉=

∣∣∣112
〉

+
∣∣∣121

〉
+
∣∣∣211

〉
. (2.11)

Example 2.2 Let N +M = 3, n = 3, M1 = M2 = M3 = 1. Then∣∣∣Ω〉=
∣∣∣123

〉
+(−1)p(1)p(2)

∣∣∣213
〉

+(−1)p(2)p(3)
∣∣∣132

〉
+

+(−1)p(1)p(3)+p(2)p(3)
∣∣∣312

〉
+(−1)p(1)p(2)+p(1)p(3)

∣∣∣231
〉

+

+(−1)p(1)p(2)+p(2)p(3)+p(1)p(3)
∣∣∣321

〉
.

(2.12)

Example 2.3 Let N +M = 3, n = 4, M1 = 2,M2 = M3 = 1, p(1) = 0, p(2) = p(3) = 1. Then∣∣∣Ω〉=
∣∣∣1123

〉
+
∣∣∣1213

〉
+
∣∣∣2113

〉
+
∣∣∣1231

〉
+

+
∣∣∣2311

〉
+
∣∣∣2131

〉
+
∣∣∣2113

〉
−(2↔ 3) .

(2.13)

Notice that in the case when all p(a) = 0 we return back to the non-supersymmetric case:
ΩJ = 1 for all J . On the other hand when all p(a) = 1 we get completely antisymmetric tensor
Ωa1...an = εa1...an . Thus different choices of B (A.1) provide different eigenfunctions (2.8). At
the same time the eigenvalues are the same (2.9), so that we get a degeneracy of the spectrum
for the Hamiltonian (2.7).
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It is also worth noting that in order to change the sign of κ in the Hamiltonian (2.7) we need

to construct vector
∣∣∣Ω−〉, which is antisymmetric under the action of permutations:〈

Ω−

∣∣∣Pij = −
〈

Ω−

∣∣∣ , (2.14)

where the sign is opposite to the one in (2.6). Such a vector can not contain two identical bosons
because the permutation of them contradicts assumption (2.14). In other situations it can be
build. The example is given below.

Example 2.4 Let N + M = 3, n = 3, M1 = M2 = M3 = 1 as in (2.12) and p(1) = p(2) =
p(3) = 1. Then ∣∣∣Ω−〉=

∣∣∣123
〉

+
∣∣∣213

〉
+
∣∣∣132

〉
+
∣∣∣312

〉
+
∣∣∣231

〉
+
∣∣∣321

〉
. (2.15)
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3 SUSY qKZ-Ruijsenaars correspondence: rational case

In this Section we generalize the correspondence between KZ-equations and Calogero-Moser
system to the case of qKZ-equations with structural supergroup and the Ruijsenaars-Schneider
system. The qKZ-equations have the form:

eη~∂xi
∣∣∣Φ〉 = K

(~)
i

∣∣∣Φ〉, i = 1, . . . , n , (3.1)

where the operator in the r.h.s

K
(~)
i = Ri i−1(xi−xi−1+η~) . . .Ri1(xi−x1+η~)g(i)Rin(xi−xn) . . .Ri i+1(xi−xi+1) (3.2)

are constructed by means of the quantum R-matrix R, which is a (unitary) solution of the
graded Yang-Baxter equation. We start with the rational one

Rij(x) =
xI + ηPij

x+ η
, (3.3)

where Pij is a graded permutation operator (A.7). Similarly to the non-supersymmetric case
introduce the rescaled R-matrix:

R̃(x) =
x+ η

x
R(x) = I +

η

x
P. (3.4)

The transfer-matrix of the corresponding supersymmetric spin-chain:

T(x) = str0

(
R̃0n(x− xn) . . . R̃02(x− x2)R̃01(x− x1) (g ⊗ I)

)
(3.5)

provides non-local Hamiltonians – its residues:

T(x) = strg · I +
n∑
j=1

ηHj

x− xj
(3.6)

or
Hi = R̃i i−1(xi−xi−1) . . . R̃i1(xi−x1)g(i)R̃in(xi−xn) . . . R̃i i+1(xi−xi+1). (3.7)

Alternatively,

Hi = K
(0)
i

n∏
j 6=i

xi − xj + η

xi − xj
. (3.8)

From comparison of expansions of the transfer-matrix at x→∞ in the forms (3.5) and (3.6)

strg · I +
η

x

n∑
i=1

str0

(
P0ig

(0)
)

+ . . . = strg · I +
η

x

n∑
i=1

Hi + . . . (3.9)

we obtain:
n∑
i=1

Hi =
n∑
i=1

g(i) =
N+M∑
a=1

gaMa, (3.10)

where the property (A.13) was used. To obtain the correspondence we project the qKZ-equations

on the vector
∣∣∣Ω〉 (2.6), constructed in the previous Section:

eη~∂xi
〈

Ω
∣∣∣Φ〉 = eη~∂xiΨ =

〈
Ω
∣∣∣K(~)

i

∣∣∣Φ〉 =
〈

Ω
∣∣∣K(0)

i

∣∣∣Φ〉. (3.11)
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and repeat all evaluations from [20]. This yields:

n∑
i=1

(
n∏
j 6=i

xi − xj + η

xi − xj

)
eη~∂xiΨ =

n∑
i=1

n∏
j 6=i

xi − xj + η

xi − xj

〈
Ω
∣∣∣K(0)

i

∣∣∣Φ〉 =

=
n∑
i=1

〈
Ω
∣∣∣Hi

∣∣∣Φ〉 =
n∑
i=1

〈
Ω
∣∣∣g(i)

∣∣∣Φ〉 =
N+M∑
a=1

ga

〈
Ω
∣∣∣Ma

∣∣∣Φ〉 =

(
N+M∑
a=1

gaMa

)
Ψ ,

where
Ψ =

〈
Ω
∣∣∣Φ〉 (3.12)

is the eigenfunction and

E =
N+M∑
a=1

gaMa (3.13)

is the eigenvalue.

Remark 3.1 To obtain the Macdonald-Ruijsenaars Hamiltonian with the opposite sign of the
coupling constant η and ~ one should start with the R-matrix

Rij(x) =
xI + ηPij

x− η
(3.14)

in (3.1) instead of (3.3). The R-matrix (3.14) is still unitary and acts identically on the anti-

symmetric vector
∣∣∣Ω−〉 (2.14) which is to be used instead of

∣∣∣Ω〉.
Higher Hamiltonians

Following construction in the non-supersymmetric case it can be shown that the wave function

Ψ =
〈

Ω
∣∣∣Φ〉 satisfies the equations

d∏
s=1

e
η~ ∂

∂xis Ψ =
〈

Ω
∣∣∣K(0)

i1
. . .K

(0)
id

∣∣∣Φ〉 for ik 6= im . (3.15)

The proof of this statement is the same as in [20]. One more point needed for the correspondence
is the determinant identity:

det
1≤i,j≤n

(
zδij −

ηHi

xj − xi + η

)
=

N∏
a=1

(z − ga)Ma . (3.16)

It was proven for the supersymmetric case in [17]. Therefore, the correspondence works in the

supersymmetric case as well. Namely, given a solution |Φ
〉

of the qKZ equations the wave func-

tion of the rational Ruijsenaars-Schneider quantum problem is given by (3.12). The eigenvalues
are the same symmetric polynomials as in the non-supersymmetric case (1.11).
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4 SUSY qKZ-Ruijsenaars correspondence:

trigonometric case

Trigonometric solution of the graded Yang-Baxter equation has the following form:

R12(x) =

1

2 sinh(x+ η)

N+M∑
a=1

(
ex+ηq−2p(a) − e−x−ηq2p(a)

)
eaa ⊗ eaa +

sinhx

sinh(x+ η)

N+M∑
a6=b

eaa ⊗ ebb+

+
sinh η

sinh(x+ η)

N+M∑
a<b

(
ex(−1)p(b)eab ⊗ eba + e−x(−1)p(a)eba ⊗ eab

)
,

(4.1)

where q = eη. It is rewritten as follows:

R12(x)= P12 +
sinhx

sinh(x+η)

(
I−Pq

12

)
+ G+

12 , (4.2)

where P12 is the graded permutation operator (A.7), Pq
12 – its deformation (quantum permuta-

tion operator)

Pq
12 =

N+M∑
a=1

(−1)p(a)eaa ⊗ eaa + q
N+M∑
a>b

(−1)p(b)eab ⊗ eba + q−1
N+M∑
a<b

(−1)p(b)eab ⊗ eba (4.3)

and

G+
12 =

N+M∑
a=1

(sinh(x+ η − 2ηp(a))

sinh(x+ η)
− (−1)p(a) +

sinh(x)

sinh(x+ η)
((−1)p(a) − 1)

)
eaa ⊗ eaa =

=
∑
a∈F

2(cosh η − 1) sinh(x)

sinh(x+ η)
eaa ⊗ eaa

(4.4)

or

G+
12 =

N+M∑
a=1

G+
a eaa ⊗ eaa , G+

a =
(1− (−1)p(a))(cosh η − 1) sinh(x)

sinh(x+ η)
. (4.5)

The R-matrix entering the transfer-matrix differs from (4.1) by a scalar factor:

R̃12(x) =
sinh(x+ η)

sinhx
R12(x) , (4.6)

and the transfer-matrix itself is defined similarly to (3.5). The Hamiltonians appear through
the expansion

T(x) = C + sinh η
n∑
k=1

Hk coth(x− xk) . (4.7)

They are related to the operators in the r.h.s of the qKZ-equations by the same formulae as in
non-supersymmetric case:

Hi = K
(0)
i

n∏
j 6=i

sinh(xi − xj + η)

sinh(xi − xj)
. (4.8)
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4.0.1 Construction of q-symmetric vectors

Our strategy is as follows. Following the non-supersymmetric construction [20] we now need

to find a vector
〈

Ωq

∣∣∣ with the property〈
Ωq

∣∣∣Ri i−1(x) =
〈

Ωq

∣∣∣Pi i−1, i = 2, . . . , n . (4.9)

Let us show that this vector has the form:〈
Ωq

∣∣∣ =
∑
J

q`(J)ΩJ

〈
J
∣∣∣ , (4.10)

where ΩJ are the same as in rational case (2.7), (2.10), while `(J) is defined to be the minimal
number of elementary permutations required to get the multi-index J = (j1, j2, . . . , jn) starting
from the “minimal” one. The “minimal” order implies that the jk’s are ordered as 1 ≤ j1 ≤
j2 ≤ . . . ≤ jn ≤ N (see [20]). The proof is straightforward. First, by the construction we see
that 〈

Ωq

∣∣∣Pq
i,i−1 =

〈
Ωq

∣∣∣ . (4.11)

In contrast to the non-supersymmetric case we have additional terms G+
i,i−1 in R-matrices (4.2).

However, they do not provide any input when acting on
〈

Ωq

∣∣∣:〈
Ωq

∣∣∣G+
i,i−1 = 0 . (4.12)

It happens because of the tensor structure (4.4). Indeed,

G+
i,i−1

∣∣∣J〉 = G+
ai
δai,ai−1

∣∣∣J〉 , (4.13)

so that only the same basis vectors eai entering
∣∣∣J〉 may contribute. But we have already

assumed that our vector < Ωq| does not contain two identical fermions, and for bosons G+
a = 0.

Finally, from (4.2) we come to (4.9).

Example 4.1 Let N +M = 3, n = 3, M1 = M2 = M3 = 1. Then∣∣∣Ωq

〉
=
∣∣∣123

〉
+q (−1)p(1)p(2)

∣∣∣213
〉

+q (−1)p(2)p(3)
∣∣∣132

〉
+

+q2(−1)p(1)p(3)+p(2)p(3)
∣∣∣312

〉
+q2 (−1)p(1)p(2)+p(1)p(3)

∣∣∣231
〉

+

+q3(−1)p(1)p(2)+p(2)p(3)+p(1)p(3)
∣∣∣321

〉
.

(4.14)

4.0.2 Calculation of the eigenvalue

Coming back to the proof of the correspondence we need the identity〈
Ωq

∣∣∣K(~)
i =

〈
Ωq

∣∣∣K(0)
i =

〈
Ωq

∣∣∣Pi i−1 . . .Pi1 , (4.15)

13



which follows from Pi i−1P
q
i i−2 = Pq

i−1 i−2Pi i−1 and an analogue of the identity

T(±∞) = C± sinh η
∑
k

Hk =
N∑
a=1

gae
±ηMa

for the supersymmetric case. It is as follows.

Proposition 4.1

T(∞) =
∑
a∈B

gae
ηMa −

∑
a∈F

gae
−ηMa

T(−∞) =
∑
a∈B

gae
−ηMa −

∑
a∈F

gae
ηMa

(4.16)

Proof: We will prove the first one and the second is analogous. Let us first find the asymptotics
of the R-matrix:

R̃(∞) = I + (q − q−1)
N+M∑
a<b

(−1)p(b)eab ⊗ eba + (q − 1)
N+M∑
a=1

(−1)p(a)eaa ⊗ eaa+

+
N+M∑
a=1

(
q1−2p(a) − (−1)p(a)q + ((−1)p(a) − 1)

)
eaa ⊗ eaa .

(4.17)

This expression can be rewritten in the following form:

R̃(∞) = I + (q − q−1)
N+M∑
a<b

(−1)p(b)eab ⊗ eba +
N+M∑
a=1

(
q1−2p(a) − 1

)
eaa ⊗ eaa . (4.18)

The off-diagonal part does not contribute to the trace in (3.5). Therefore,

T(∞) =
N+M∑
a=1

(−1)p(a)ga

n∏
j=1

(
1 + (q1−2p(a) − 1)e(j)aa

)
=

=
N+M∑
a=1

(−1)p(a)ga

n∏
j=1

(
1 +

∞∑
Nj=1

ηNj(1− 2p(a))Nj

Nj!
e(j)aa

)
=

=
N+M∑
a=1

(−1)p(a)ga

n∏
j=1

( ∞∑
Nj=0

ηNj(1− 2p(a))Nj

Nj!
(e(j)aa )Nj

)
(4.19)

and, finally,

T(∞) =
N+M∑
a=1

(−1)p(a)ga

n∏
j=1

(
eη(1−2p(a))e

(j)
aa

)
=
N+M∑
a=1

(−1)p(a)ga

(
eη(1−2p(a))

∑n
j=1 e

(j)
aa

)
=

=
N+M∑
a=1

(−1)p(a)ga

(
eη(1−2p(a))Ma

)
=
∑
a∈B

gae
ηMa −

∑
a∈F

gae
−ηMa . �

(4.20)

14



Notice that although this formula depend on the choice of B and F the eigenvalue of the
Ruijsenaars-Schneider Hamiltonian is independent of it:

n∑
i=1

(
n∏
j 6=i

sinh(xi − xj + η)

sinh(xi − xj)

)
eη~∂xiΨ =

n∑
i=1

n∏
j 6=i

sinh(xi − xj + η)

sinh(xi − xj)

〈
Ωq

∣∣∣K(0)
i

∣∣∣Φ〉 =

=
n∑
i=1

〈
Ωq

∣∣∣Hi

∣∣∣Φ〉 =
〈

Ωq

∣∣∣T(∞)−T(−∞)

2 sinh η

∣∣∣Φ〉 =

=
〈

Ωq

∣∣∣∑
a∈B

ga
sinh(ηMa)

sinh η
+
∑
a∈F

ga
sinh(ηMa)

sinh η

∣∣∣Φ〉 =

=
N+M∑
a=1

ga

〈
Ωq

∣∣∣sinh(ηMa)

sinh η

∣∣∣Φ〉 =

(
N+M∑
a=1

ga
sinh(ηMa)

sinh η

)
Ψ .

(4.21)

Therefore,

Ψ =
〈

Ωq|Φ
〉

(4.22)

is indeed the eigenfunction of the Ruijsenaars-Schneider Hamiltonian with the eigenvalue

E =
N+M∑
a=1

ga
sinh(ηMa)

sinh η
. (4.23)

4.0.3 Construction of q-antisymmetric vectors

In order to extend the correspondence to the case of the Hamiltonian with the opposite sign of
η we should start with a different R-matrix:

R(x) =

1

2 sinh(x− η)

N+M∑
a=1

(ex+ηq−2p(a) − e−x−ηq2p(a))eaa ⊗ eaa +
sinhx

sinh(x− η)

N+M∑
a6=b

eaa ⊗ ebb+

+
sinh η

sinh(x− η)

N+M∑
a<b

(
ex(−1)p(b)eab ⊗ eba + e−x(−1)p(a)eba ⊗ eab

)
.

(4.24)

It is similar to (3.14) in the rational case. Expression (4.24) can be rewritten in the form:

R12(x)= −P12 +
sinhx

sinh(x−η)

(
I + Pq

12

)
+ G−12 , (4.25)
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where

G−12 =

=
N+M∑
a=1

(sinh(x+ η − 2ηp(a))

sinh(x− η)
+ (−1)p(a) − sinh(x)

sinh(x− η)
((−1)p(a) + 1)

)
eaa ⊗ eaa =

=
∑
a∈B

2(cosh η − 1) sinh(x)

sinh(x− η)
eaa ⊗ eaa =

N+M∑
a=1

G−a eaa ⊗ eaa .

(4.26)

Similarly to the case of symmetric vector (and also similarly to (2.14)) it is easy to see that the

vector
〈

Ωq

∣∣∣ with the property 〈
Ωq

∣∣∣Pq
i,i−1 = −

〈
Ωq

∣∣∣ (4.27)

can not contain two same bosons. On the other hand G−12 acts by zero on the pair of the same
fermions. Thus 〈

Ωq|Ri,i−1 = −
〈

Ωq|Pi,i−1 . (4.28)

Repeating the steps from the previous paragraphs we obtain the following expressions for the
asymptotics of the R-matrix at infinity:

R̃(∞) = I + (q − q−1)
N+M∑
a>b

(−1)p(b)eab ⊗ eba +
N+M∑
a=1

(
q1−2p(a) − 1

)
eaa ⊗ eaa ,

R̃(−∞) = I + (q−1 − q)
N+M∑
a<b

(−1)p(b)eab ⊗ eba +
N+M∑
a=1

(
q−1+2p(a) − 1

)
eaa ⊗ eaa ,

(4.29)

where

R̃(x) =
sinh(x− η)

sinhx
R(x) . (4.30)

It is easy to see that these asymptotics differ from the corresponding asymptotics in the q-
symmetric case by non-diagonal part only, but the latter does not contribute to the trace in the
transfer-matrix. Therefore, the Hamiltonian with the opposite sign of η has the same eigenvalue:

n∑
i=1

(
n∏
j 6=i

sinh(xi − xj − η)

sinh(xi − xj)

)
eη~∂xiΨ =

(
N+M∑
a=1

ga
sinh(ηMa)

sinh η

)
Ψ . (4.31)
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4.0.4 Symmetry between q-(anti)symmetric vectors

In this paragraph we will show that the usage of q-antisymmetric vectors do not actually
lead to any new wave functions of the RS-system. For this paragraph let us introduce more
refined notations:

R̃p(x|η) =
1

2 sinhx

N+M∑
a=1

(
ex+ηq−2p(a) − e−x−ηq2p(a)

)
eaa ⊗ eaa +

N+M∑
a6=b

eaa ⊗ ebb +

+
sinh η

sinhx

N+M∑
a<b

(
ex(−1)p(b)eab ⊗ eba + e−x(−1)p(a)eba ⊗ eab

)
and

Rp
±(x|η) =

sinhx

sinh(x± η)
R̃p(x|η) , (4.32)

where index p stands for the fixed choice of grading.
Let us introduce the operator Q of the grading change:

p(Qea) = p(ea) + 1 (4.33)

This operator simply changes all basis vectors ea, which were boson into fermions and vice versa.
It is easy to see from this definition that the R-matrix has a symmetry

QR̃p(x|η)Q−1 = R̃p+1(x| − η) . (4.34)

Therefore,
QRp

−(x|η)Q−1 = Rp+1
+ (x| − η) . (4.35)

For the special vectors (on which we project solution) we also reserve the following notations:〈
Ωp
q+

∣∣∣Pq,p
i,i−1 =

〈
Ωp
q+

∣∣∣ (4.36)〈
Ωp
q−

∣∣∣Pq,p
i,i−1 = −

〈
Ωp
q−

∣∣∣ (4.37)

By changing all bosons to fermions in these equations and vice versa, and taking into account
that

QPq,p
i,i−1Q

−1 = −Pq,p+1
i,i−1 (4.38)

we get 〈
Ωp
q+

∣∣∣Q =
〈

Ωp+1
q−

∣∣∣ . (4.39)

As a first step towards the explanation of the origin of the wavefunctions for Hamiltonians with
signs of η and ~ changed we will prove the following

Proposition 4.2 For any solution |Φp
−(x|η, ~)〉 of the qKZ-equations, with the R-matrix Rp

−(x|η),
suitable for projecting on the q-antisymmetric vector 〈Ωp

q−|, we can construct the solution |Φp+1
+ (x|η, ~)〉

of the qKZ-equations, with the R-matrix Rp+1
+ (x|η), suitable for projecting on the q-symmetric

vector 〈Ωp+1
q+ |.
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Proof: Consider the qKZ-equations:

eη~∂xi
∣∣∣Φp
−(x|η, ~)

〉
= Rp

−,i i−1(xi−xi−1+η~|η) . . .Rp
−,i1(xi−x1+η~|η)g(i) ×

×Rp
−,in(xi−xn|η) . . .Rp

−,i i+1(xi−xi+1|η)
∣∣∣Φp
−(x|η, ~)

〉
, i = 1, . . . , n .

Changing signs of η and ~ yields

eη~∂xi
∣∣∣Φp
−(x| − η,−~)

〉
= Rp

−,i i−1(xi−xi−1+η~| − η) . . .Rp
−,i1(xi−x1+η~| − η)g(i) ×

×Rp
−,in(xi−xn| − η) . . .Rp

−,i i+1(xi−xi+1| − η)
∣∣∣Φp
−(x| − η,−~)

〉
, i = 1, . . . , n .

Using the symmetry (4.34) this could be rewritten in the form:

eη~∂xiQ
∣∣∣Φp
−(x| − η,−~)

〉
= Rp+1

+,i i−1(xi−xi−1+η~|η) . . .Rp+1
+,i1(xi−x1+η~|η)g(i) ×

×Rp+1
+,in(xi−xn|η) . . .Rp+1

+,i i+1(xi−xi+1|η)Q
∣∣∣Φp
−(x| − η,−~)

〉
, i = 1, . . . , n .

From here it could be inherited that the desired solution |Φp+1
+ (x|η, ~)〉 is the following:∣∣∣Φp+1

+ (x|η, ~)
〉

= Q
∣∣∣Φp
−(x| − η,−~)

〉
(4.40)

�
Now we are ready to prove the main statement.

Consider the space of all wavefunctions Ψ−(x|η, ~) of the Ruijsenaars Hamiltonian with signs
of η and ~ changed:

n∑
i=1

(
n∏
j 6=i

sinh(xi − xj − η)

sinh(xi − xj)

)
eη~∂xiΨ−(x|η, ~) =

(
N+M∑
a=1

ga
sinh(ηMa)

sinh η

)
Ψ−(x|η, ~) , (4.41)

which could be obtained with our construction, i.e. have the form:

Ψ−(x|η, ~) =
〈

Ωp
q−

∣∣∣Φp
−(x|η, ~)

〉
(4.42)

For any such Ψ−(x|η, ~) the function Ψ+(x|η, ~) = Ψ−(x| − η,−~) is automatically the the
wavefunction:

n∑
i=1

(
n∏
j 6=i

sinh(xi − xj + η)

sinh(xi − xj)

)
eη~∂xiΨ+(x|η, ~) =

(
N+M∑
a=1

ga
sinh(ηMa)

sinh η

)
Ψ+(x|η, ~) , (4.43)

We are going to prove the following

Proposition 4.3 For any wavefunction of the form (4.42) the corresponding Ψ+(x|η, ~) =
Ψ−(x| − η,−~) could also be obtained from the qq-duality construction, i.e. has the form:

Ψ+(x|η, ~) =
〈

Ωp+1
q

∣∣∣Φp+1
+ (x|η, ~)

〉
(4.44)
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The proof follows from the previous proposition with |Φp+1
+ (x|η, ~)〉 defined as in (4.40) and the

remark (4.39).
This proposition actually means that for any wavefunction, constructed with the help of the q-
antisymmetric vector, the existence of the corresponding solution of the qKZ equation (i.e. the
existence of the qq-duality for it) is a simple consequence of the existence of such solution for the
the wavefunction with signs of η and ~ changed, constructed with the help of the q-symmetric
vector.
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5 Conclusion

In this thesis the quantum-quantum duality between the system of qKZ-equations and Ruijsenaars-
Schneider model was generalized to the case of the structural supergroup of the former one. The
expressions for the integrable system Hamiltonian’s eigenvalues were obtained. They appeared
to coincide with those, obtained from the non-supersymmetric case, in agreement with the pre-
diction, made in the quantum-classical version of this duality. One of the possible directions
for future work is to construct this correspondence for qKZ-equations, associated with more
involved algebras.
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6 Appendix

Here we give a short summary of notations and definitions related to Lie superalgebra
gl(N |M).

Let B be any one of the subsets of {1, 2, . . . , N + M} with Card(B) = N , and F – is
the complement set F = {1, 2, . . . , N + M} \B. The vector space CN |M is endowed with the
Z2-grading. The grading parameter is defined as

p(a) =

{
0 , a ∈ B (bosons) ,
1 , a ∈ F (fermions) .

(A.1)

The Lie superalgebra gl(N |M) is defined by the following relations:

eabecd − (−1)p(eab)p(ecd)ecdeab = δbcead − (−1)p(eab)p(ecd)δadecb , (A.2)

where
p(eab) = p(a) + p(b) mod 2 . (A.3)

In the fundamental representation the set of generators {eab} forms the standard basis in matri-
ces End(CN |M): (eab)ij = δiaδjb, so that for the orthonormal basis vectors ea, a = 1, ..., N + M
in CN |M (i.e. (ea)k = δak) we have

eab ec = δbc ea . (A.4)

For any homogeneous (with distinct grading) operators {Ai ∈ End(CN |M)}4i=1 and homogeneous
vectors x ,y ∈ CN |M :

(A1 ⊗A2)(x⊗ y) = (−1)p(A2)p(x)(A1x⊗A2y) (A.5)

and
(A1 ⊗A2)(A3 ⊗A4) = (−1)p(A2)p(A3)(A1A3 ⊗A2A4) . (A.6)

The graded permutation operator P12 ∈ End(CN |M ⊗ CN |M) is of the form:

P12 =
M+N∑
a,b=1

(−1)p(b)eab ⊗ eba. (A.7)

Due to (A.5) it permutes any pair of homogeneous vectors x and y by the rule

P12 x⊗ y = (−1)p(x)p(y)y ⊗ x . (A.8)

In particular,
P12 ea ⊗ ea = (−1)p(a) ea ⊗ ea . (A.9)

The supertrace and the superdeterminant of M∈ End(CN |M) are given by

strM =
N+M∑
a=1

(−1)p(a)Maa (A.10)

and
sdetM = exp(str logM) . (A.11)

For an operator M(i) acting by M on the i-th component of (CN |M)⊗n we have

PijM(j) =M(i) Pij , (A.12)

str0(P0iM(0)) =M(i) . (A.13)
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