### Министерство образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

"Московский физико-технический институт (государственный университет)"

Факультет общей и прикладной физики

Кафедра теоретической астрофизики и квантовой теории поля

### Три-векторные деформации решений 11-ти мерной супергравитации

Выпускная квалификационная работа (магистерская работа)

Направление подготовки: 03.04.01 Прикладные математика и физика

Работу выполнил: студент 821 группы Губарев Кирилл Алексеевич

Научный руководитель: к.ф.-м.н., с.н.с Мусаев Эдвард Таваккулович

Москва, 2020

# Аннотация

Построено вложение 7 + 4 супергравитации в SL(5) ExFT. Рассмотрена редукция SL(5) ExFT для описания пространств вида  $M_4 \times M_7$  и для нее сконструирована обобщенная деформация Янга-Бакстера. Развитый формализм применен к решению 11-ти мерной супергравитации  $AdS_4 \times S^7$ , предъявлены две новые неабелевы неунимодулярные три–векторные деформации  $\Omega \sim P \wedge P \wedge M$  и  $\Omega \sim D \wedge P \wedge P$ , генерирующие новые решения супергравитации.

# Содержание

| 1        | Введе      | ние                                                                                                                          | 2  |  |  |  |  |  |  |  |
|----------|------------|------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|--|
|          | 1.1        | Связь деформаций решений уравнений 10-ти мерной супергравитации и класси-                                                    |    |  |  |  |  |  |  |  |
|          |            | ческих уравнений Янга-Бакстера                                                                                               | 2  |  |  |  |  |  |  |  |
|          | 1.2        | 11-ти мерная супергравитация и исключительная теория поля                                                                    | 5  |  |  |  |  |  |  |  |
|          | 1.3        | Исключительная теория поля $SL(5)$                                                                                           | 11 |  |  |  |  |  |  |  |
|          | 1.4        | Деформации решений уравнений 11-ти мерной супергравитации                                                                    | 14 |  |  |  |  |  |  |  |
| <b>2</b> | Влож       | ение 11-ти мерной супергравитации в SL(5) ExFT                                                                               | 16 |  |  |  |  |  |  |  |
|          | 2.1        | Действие 11-ти мерной супергравитации                                                                                        | 16 |  |  |  |  |  |  |  |
|          | 2.2        | Действие Эйнштейна–Гильберта                                                                                                 | 16 |  |  |  |  |  |  |  |
|          | 2.3        | Кинетический член 3-форм                                                                                                     | 17 |  |  |  |  |  |  |  |
|          | 2.4        | Построение вложения                                                                                                          | 18 |  |  |  |  |  |  |  |
| 3        | Уравн      | ения движения для редукции SL(5) ExFT                                                                                        | 21 |  |  |  |  |  |  |  |
|          | 3.1        | Редукция SL(5) ExFT                                                                                                          | 21 |  |  |  |  |  |  |  |
|          | 3.2        | Обобщенная деформация Янга–Бакстера                                                                                          | 22 |  |  |  |  |  |  |  |
|          | 3.3        | Уравнения движения                                                                                                           | 24 |  |  |  |  |  |  |  |
| 4        | Три-н      | екторные деформации фона $\mathrm{AdS}_4 	imes \mathbb{S}^7$                                                                 | 26 |  |  |  |  |  |  |  |
|          | 4.1        | $P \wedge P \wedge P$                                                                                                        | 27 |  |  |  |  |  |  |  |
|          | 4.2        | $P \wedge P \wedge M$                                                                                                        | 27 |  |  |  |  |  |  |  |
|          | 4.3        | $D \wedge P \wedge P$                                                                                                        | 28 |  |  |  |  |  |  |  |
|          | 4.4        | $D \wedge K \wedge K$                                                                                                        | 29 |  |  |  |  |  |  |  |
|          | 4.5        | Деформации 2–ого порядка по $x^a$                                                                                            | 30 |  |  |  |  |  |  |  |
| 5        | Заклю      | Очение                                                                                                                       | 31 |  |  |  |  |  |  |  |
| 6        | *Обсу      | ждение                                                                                                                       | 31 |  |  |  |  |  |  |  |
| A        | Испол      | ъзуемые обозначения и соглашения                                                                                             | 34 |  |  |  |  |  |  |  |
| Б        | Алгеб      | $pa SL(5) \dots \dots$ | 35 |  |  |  |  |  |  |  |
| В        | Уравн      | ения интергрируемости                                                                                                        | 36 |  |  |  |  |  |  |  |
|          | B.1        | Уравнения Янга-Бакстера                                                                                                      | 36 |  |  |  |  |  |  |  |
|          | B.2        | Уравнения Френкеля-Мура-Замолодчикова                                                                                        | 36 |  |  |  |  |  |  |  |
| Г        | Ковар      | иантная формулировка ExFT в Ω-фрейме                                                                                         | 38 |  |  |  |  |  |  |  |
|          | Г.1        | Ковариантная производная для скаляров                                                                                        | 38 |  |  |  |  |  |  |  |
|          | $\Gamma.2$ | Q- и R-флаксы                                                                                                                | 39 |  |  |  |  |  |  |  |
|          | Г.З        | Ковариантная производная для тензорных полей                                                                                 | 40 |  |  |  |  |  |  |  |
| С        | писок.     | литературы                                                                                                                   | 41 |  |  |  |  |  |  |  |

### 1 Введение

### 1.1 Связь деформаций решений уравнений 10-ти мерной супергравитации и классических уравнений Янга-Бакстера

История изучения связи деформаций решений уравнений 10-ти мерной супергравитации с классическими уравнениями Янга-Бакстера из теории интегрируемых систем берет начало с работ [1, 2, 3]. В [1] было показано, что суперструна Грина-Шварца (ГШ) на фоне  $AdS_5 \times S^5$ обладает бесконечным числом сохраняющихся зарядов и поэтому является интегрируемой. Аналогичный результат был получен для  $\sigma$ -модели Янга-Бакстера [2], являющейся деформацией Пуассона-Ли интегрируемой главной киральной модели и частным случаем  $\sigma$ -моделей Янга-Бакстера на групповых многообразиях, рассматриваемых в [3].

Следующим шагом стало обобщение этих деформаций, и построение так называемой  $\eta$ деформации [4]. Она дает уже известный результат для главной киральной модели, а также позволяет деформировать интегрируемые  $\sigma$ -модели, определенные не только на групповых многообразиях, но и на факторпространствах типа G/K, где K - максимальная компактная подгруппа группы G. Применяя обобщение метода развитого в [4] было построено  $\eta$ -деформированное действие IIB суперструны на фоне  $AdS_5 \times \mathbb{S}^5$  и показано, что деформированная таким образом теория остается интегрируемой [5].

Для  $\eta$ -деформированной  $\sigma$ -модели на  $AdS_5 \times \mathbb{S}^5$  были найдены бозонные и фермионные части лагранжиана, а также переопределение полей, переводящее соответствующий деформированный лагранжиан в стандартный лагранжиан IIB суперструны ГШ, соответствующий набор получающихся фоновых полей называется фоном Арутюнова-Борсато-Фролова (АБФ) [6, 7]. Удивительно, что поля RR-сектора фона АБФ не удовлетворяют уравнениям IIB супергравитации [7], но решают уравнения так называемой обобщенной супергравитации [8].

Фон АБФ, решающий уравнения обобщенной супергравитации, связан преобразованием Tдуальности с фоном Хоара-Цейтлина (ХЦ), решающим уравнения IIB-супергравитации [8, 9, 10]. Стоит отметить, что T-дуальность в данном случае понимается в особом смысле (обобщенная T-дуальность), так как метрика  $G^{XII}$  и RR-поля  $\mathcal{F}^{XII}$  фона XII не зависят от направления  $I_m^{AB\Phi}$  (векторного поля Киллинга для фона AБФ), вдоль которого применяется T-дуальность (заметим поле Кальба-Рамонда (КБ)  $B^{XII} = 0$ ), а дилатон  $\phi^{XII}$  зависит линейно от этого направления. Тем не менее, действие струны ГШ на фоне XII инвариантно относительно преобразований T-дуальности, так как дилатон входит в него через инвариантные RR-поля и производные. В результате  $G^{XII}$ ,  $B^{XII}$ ,  $\mathcal{F}^{XII}$  преобразуются по стандартным правилам Бушера в  $G^{AБ\Phi}$ ,  $B^{AБ\Phi}$ ,  $\mathcal{F}^{AБ\Phi}$ . Однако, для фона АБФ не существует дилатона, который бы дополнял  $G^{AБ\Phi}$ ,  $B^{AБ\Phi}$ ,  $\mathcal{F}^{AB\Phi}$  до решения уравнений обычной супергравитации. Вместо этого, для фона АБФ появляется поле  $Z_m = \partial_m \phi^{AB\Phi} + B_{mn}^{AB\Phi} I^{n AB\Phi}$ , играющее роль дилатона, где  $\phi^{AB\Phi}$  находится по стандартному правилу Бушера для дилатона из части  $\phi^{XII}$ , не содержащей линейного члена вдоль  $I_m^{AB\Phi}$ . Тогда набор  $G^{AB\Phi}$ ,  $B^{AB\Phi}$ ,  $\mathcal{F}^{AB\Phi}$ ,  $Z_m$  и  $I_m^{AB\Phi}$  решает уравнения обобщенной супергравитации, отличающиеся от уравнений обычной супергравитации дополнительными членами, зависящими от  $I_m$ . В случае  $I_m = 0$  восстанавливаются обычные уравнения супергравитации.

В [11] была построена обобщенная двойная теория поля (mDFT), явно ковариантная относительно симметрии уравнений обобщенной супергравитации - обобщенной T-дуальности. Также было показано, что уравнения на NS - NS-поля в mDFT совпадают с соответствующими уравнениями обобщенной супергравитации. Затем, в [12, 13] продемонстрировано, что mDFT эквивалентна двойной теории поля (DFT) со специальным решением уравнения проекции, а также из уравнений этой теории получен полный набор уравнений обобщенной супергравитации на RR- и NS - NS-поля. Наконец в [14] уравнения обобщенной супергравитации получены из требования сохранения  $\varkappa$ -симметрии струны ГШ на соответствующем фоне, что приводит к масштабной инвариантности струны ГШ на таком фоне, а в случае, когда обобщенная супергравитация переходит в обычную ( $I_m = 0$ ), масштабная инвариантность переходит в Вейлевскую.

Наиболее общим и удобным способом построения деформаций супергравитации оказалось открыто/замкнутое струнное отображение [15, 16, 17], которое выглядит следующим образом для супергравитации с метрикой  $G_{mn}$ , дилатоном  $\Phi$ , RR-полями и полем Кальба-Рамонда  $B_{mn} = 0$ 

$$g_{mn} + b_{mn} = (G^{-1} + \beta^{mn})^{-1}, \qquad e^{-2\phi}\sqrt{|detg_{mn}|} = e^{-2\Phi}\sqrt{|detG_{mn}|}, \tag{1.1}$$

где  $g_{mn}$ ,  $b_{mn}$ ,  $\phi$  - деформированные поля, а  $\beta^{mn} = r^{ab}k_a^m k_b^n$  - антисимметричный параметр деформации, построенный из векторов Киллинга метрики  $G_{mn}$ , с антисимметричной матрицей  $r^{ab}$ .

Впервые данное отображение было рассмотрено в [17], где было показано, что открытая струна на фоне полей  $g_{mn}$ ,  $b_{mn}$ , появляющихся в спектре замкнутой струны, может быть эффективно описана, как струна, распространяющаяся в некоммутативном пространстве с метрикой  $G_{mn}$  и параметром некоммутативности  $\beta^{mn}$ . А именно, если  $b_{mn}$  имеет ранг p, и  $b_{kl} \neq 0$  вдоль направлений  $k, l = \overline{1, p}$  и ноль для остальных, то коррелятор для координат концов струны выглядит следующим образом

$$\langle X^{k}(\tau), X^{l}(\tau') \rangle = -\alpha' G^{kl} ln(\tau - \tau')^{2} + \frac{i}{2} \beta^{kl} \theta(\tau - \tau'), \qquad k, l = \overline{1, p}.$$

$$(1.2)$$

В [18, 19] было предположено и продемонстрировано на примерах, что в  $\mathcal{N} = 2, d = 10$  супергравитации для того, чтобы деформированный фон (1.1) оставался решением супергравитации,  $r^{ab}$  должно удовлетворять классическим уравнениям Янга-Бакстера (Приложение В.1)

$$f_{de}{}^{[a}r^{b|d|}r^{c]e} = 0, (1.3)$$

где  $f_{ab}{}^{c}$  - структурные константы алгебры векторов Киллинга  $[k_a, k_b] = f_{ab}{}^{c}k_c$ .

В [20] данное предположение было доказано при помощи формализма DFT (теории, явно ковариантной относительно *T*-дуальности) и β-супергравитации [21]. В терминах двойной теории поля деформация Янга-Бакстера обретает ясный смысл и вид (Puc.1).



Рис. 1: Связь фона  $(G_{mn}, \Phi)$ , решающего уравнения 10D супергравитации, и его деформации  $(g_{mn}, b_{mn}, \phi)$ . *b*-фрейм - супергравитация (возможно обобщенная, если  $I_m \neq 0$ ),  $\beta$ -фрейм -  $\beta$ -супергравитация [21]. Деформация Янга-Бакстера действует на решение супергравитации, и в данном случае интерпретируется, как композиция деформации с параметром  $\beta^{mn}$  и открыто/замкнутого отображения. Требования выполнений уравнений супергравитации для деформированного фона накладывает условия на  $\beta^{mn}$ , а именно (1.4).

Суть такого способа построения деформации заключается в: 1) поднятии изначального решения супергравитации ( $G_{mn}, \Phi$ ) в b-фрейм двойной теории поля; 2) затем его деформация с параметром  $\beta^{mn}$  - переход в  $\beta$ -фрейм ( $G_{mn}, \beta^{mn}, \Phi$ ); 3) переписывание деформированного решения в *b*-фрейме ( $g_{mn}, b_{mn}, \phi$ ), что дает деформированные поля.

Оказалось, что получить ограничения на параметр деформации  $\beta^{mn}$  значительно проще, работая с уравнениями  $\beta$ -супергравитации, а не с уравнениями обычной супергравитации с подставленным деформированным фоном (1.1).

В результате, ограничения на  $\beta^{mn}$  из  $\beta$ -супергравитации действительно оказываются классическими уравнениями Янга-Бакстера. Более того, для того, чтобы деформированный фон был решением обычной, а не обобщенной супергравитации, необходимо дополнительно потребовать  $I^m = 0$ . Для бикилингового вида параметра деформации  $I^m = \nabla_k \beta^{km} = f_{ab}{}^c r^{ab} k_c^m$ .

Таким образом, чтобы деформированный фон остался решением обычной супергравитации, параметр деформации должен удовлетворять [20]

$$\begin{cases} f_{de} \,^{[a} r^{b|d|} r^{c]e} = 0, & \text{(классические уравнения Янга-Бакстера),} \\ f_{ab} \,^{c} r^{ab} = 0, & \Rightarrow \quad I^{m} = 0. \end{cases}$$
(1.4)

#### 1.2 11-ти мерная супергравитация и исключительная теория поля

Начиная с этого параграфа и везде далее мы будем использовать обозначения, приведенные в Приложении.А.

Теория струн обладает симметриям T- и S- дуальности, которые объединяют пять известных теорий суперструн типа I, типа IIA/IIB, гетеротические SO(32) и  $E_8 \times E_8$ , и позволяют смотреть на них, как на различные пределы одной, более фундаментальной M-теории [22, 23, 24] (Рис. 2). M-теория обладает симметрией U-дуальности, представляющей из себя объединение T- и S- дуальностей. Низкоэнергетическим пределом M-теории является 11-ти мерная супергравитация, впревые построенная в [25].



Рис. 2: Пять известных теорий суперструн типа I, типа IIA/IIB, гетеротических SO(32) и  $E_8 \times E_8$ , и 11-ти мерная супергравитация, как пределы более фундаментальной M-теории, и их связь T- (  $\leftrightarrow$ ) и S- ( $\leftrightarrow$ ) дуальностями. M-теория обладает симметрией - U-дуальностью ( $\leftrightarrow$ ), представляющей из себя объединение S- и T- дуальностей.

Максимальная супергравитация в D измерениях, получающаяся при компактификации 11ти мерной супергравитации на тор  $\mathbb{T}^{11-D}$ , обладает скрытой глобальной группой симметрий **G** (симметрия U-дуальности) [26, 27, 28] (Таблица.1). Это означает, что бозонные поля скомпактифицированной теории могут быть сгруппированы в неприводимые представления группы симметрии **G** [26, 27, 28], а фермионные поля в неприводимые представления максимальной компактной подгруппы **G** [29, 30].

Для того, чтобы это понять, посмотрим например на бозонный спектр теории скомпактифицированной на тор  $\mathbb{T}^4$  (Рис.3).  $\mathbb{T}^4$  будем называть внутренним пространством, а координатные индексы на нем  $m, n, k, l... \in \overline{1, 4}$ . Оставшуюся семимерную часть пространства будем называть внешней, и координатные индексы на ней  $\mu, \nu, \rho, \lambda, ... \in \overline{1, 7}$ . Индексами  $\mathcal{M}, \mathcal{N}, \mathcal{K}, \mathcal{L}... \in \overline{1, 10}$ будем обозначать представление **10**, а индексами  $\mathcal{M}, N, K, L... \in \overline{1, 5}$  фундаментальное представление 5 соответствующей группы симметрии SL(5) (подробнее про обозначения смотри в Приложении.А).

Таблица 1: Глобальные симметрии 11*D* супергравитации скомпактифицированной на тор  $\mathbb{T}^{11-D}$  (максимальной супергравитации в D измерениях). **G** - глобальная группа симметрии скомпактифицированной теории, **K** - максимальная компактная подгруппа **G**.  $E_{d(d)}$  обозначает максимально некомпактную действительную форму  $E_d$  [28].

|                  | <u> </u>                                   | TZ                   |
|------------------|--------------------------------------------|----------------------|
|                  | G                                          | K                    |
| D = 10           | SO(1,1)                                    | 1                    |
| $\mathbf{D}=9$   | $SL(2,\mathbb{R})$                         | SO(2)                |
| $\mathbf{D} = 8$ | $SL(3,\mathbb{R}) \times SL(2,\mathbb{R})$ | $SO(3) \times SO(2)$ |
| $\mathbf{D}=7$   | $SL(5,\mathbb{R})$                         | SO(5)                |
| $\mathbf{D} = 6$ | SO(5,5)                                    | $SO(5) \times SO(5)$ |
| $\mathbf{D} = 5$ | $E_{6(6)}$                                 | Usp(8)               |
| $\mathbf{D}=4$   | $E_{7(7)}$                                 | SU(8)                |
| $\mathbf{D} = 3$ | $E_{8(8)}$                                 | SO(16)               |



Рис. 3: Редукция полей 11-ти мерной супергравитации в семь измерений и их объединение в SL(5) мультиплеты при помощи дуализации. Большие латинские индексы M, N, K, ... обозначают фундаментальное представление **5** группы SL(5), маленькие латинские индексы m, n, k, ... обозначают координаты на внутреннем пространстве  $\mathbb{T}^4$  (фундаментальное представление **4** группы GL(4))[31].

Как показано на Рисунке.3, получающиеся поля можно объединить в мультиплеты преобразующиеся в неприводимых представлениях группы SL(5).  $g_{\mu\nu}$  - скаляр относительно действия SL(5).  $(A_{\mu m}, A_{\mu m n})$  объединяются в  $A_{\mu}{}^{\mathcal{M}} = A_{\mu}{}^{MN}$ , преобразующийся в представлении  $\overline{10}$  SL(5) $(\mathbf{4} \oplus \mathbf{6} = \overline{10})$ .  $(h_{mn}, C_{mnk})$  объединяются в  $m_{MN}$ , симметричное представление ( $\mathbf{5} \otimes \mathbf{5}$ )<sub>симм.</sub> =  $\mathbf{14}$ группы SL(5) ( $\mathbf{10} + \mathbf{4} = \mathbf{14}$ ). Дуализуя 3-форму  $C_{\mu\nu\rho}$  в 2-форму  $\tilde{B}_{\mu\nu}$  и объединяя ее с  $B_{\mu\nu m}$ , получим мультиплет  $B_{\mu\nu M}$  в представлении  $\mathbf{5}$  группы SL(5) ( $\mathbf{1} + \mathbf{4} = \mathbf{5}$ ). С другой стороны можно дуализовать 2-формы  $B_{\mu\nu m}$  в 3-формы  $\tilde{C}_{\mu\nu\rho m}$ , объединяя последние с  $C_{\mu\nu\rho}$ , получим мультиплет  $C^{M}_{\mu\nu\rho}$  в представлении  $\mathbf{5}$  группы SL(5). Таким образом  $B_{\mu\nu M}$  и  $C^{M}_{\mu\nu\rho}$  описывают одни и те же степени свободы и связаны преобразованием дуальности

$$m^{MN} \mathcal{F}^{\mu\nu\rho}{}_N = \frac{1}{4!} \epsilon^{\mu\nu\rho\lambda\sigma\eta\delta} \mathcal{F}_{\lambda\sigma\eta\delta}{}^M.$$
(1.5)

далее (Пункты 1.2,1.3) мы поясним что подразумевается под  $\mathcal{F}^{\mu\nu\rho}{}_N$  и  $\mathcal{F}_{\lambda\sigma\eta\delta}{}^M$  и как возникает связь (1.5).

Исключительная теория поля (ExFT) - это обобщение максимальной супергравитации, скомпактифицированной на тор  $\mathbb{T}^d$ , явно ковариантное относительно группы U-дуальности G. Она позволяет дать геометрическую интерпретацию калибровочной симметрии, симметрии относительно диффеоморфизмов и симметрии дуальности, и объединяет их в симметрию относительно диффеоморфизмов на обобщенном пространстве с координатами  $(x^{\mu}, \mathbb{X}^{\mathcal{M}})$ , где  $x^{\mu}$  координаты на внешнем пространстве размерности (11-d), а  $\mathbb{X}^{\mathcal{M}}$  на обобщенном пространстве размерности  $\mathcal{R}_{\mathbb{X}}$ , которая зависит от размерности d, и определяется при помощи подсчета числа намоток объектов М-теории - бран (Таблица.2) [32, 33, 34, 35, 36, 31]. Важно заметить, что никакой компактификации при формулировке ExFT не подразумевается. Торические редукции супергравитации описанные выше используются только для подсчета числа намоток. В формализме ExFT, торические фоны являются максимально симметричными решениями относительно группы U-дуальности. Отметим также, что такой подход к построению явно ковариантной теории абсолютно идентичен тому, как строится явно ковариантная относительно Т-дуальности (скрытой симметрии 10-ти мерной супергравитации скомпактифицированной на тор  $\mathbb{T}^d$ ) двойная теория поля (DFT), размерность обобщенного пространства которой 2d, где одно d - число независимых импульсов, а второе d - число намоток струны на тор  $\mathbb{T}^d$  [37, 38, 39].

Таблица 2: Подсчет числа намоток бран в M-теории на пространстве вида  $M_{11-d} \times \mathbb{T}^d$ . **G** - группа U-дуальности, **P** - число независимых импульсов,  $\mathcal{R}_{\mathbb{X}}$  - размерность обобщенного пространства (размерность представления **G** по которому преобразуются обобщенные координаты)[31].

| d | G                    | Р | M2 | M5 | KK6 | $5^3$ | $2^6$ | 0(1,7) | $\mathcal{R}_{\mathbb{X}}$ |
|---|----------------------|---|----|----|-----|-------|-------|--------|----------------------------|
| 2 | SL(2)                | 2 | 1  | -  | -   | -     | -     | -      | 3                          |
| 3 | $SL(3) \times SL(2)$ | 3 | 3  | -  | -   | -     | -     | -      | $({\bf 3},{\bf 2})$        |
| 4 | SL(5)                | 4 | 6  | -  | -   | -     | -     | -      | 10                         |
| 5 | SO(5,5)              | 5 | 10 | 1  | -   | -     | -     | -      | $16_{\rm s}$               |
| 6 | $E_{6(6)}$           | 6 | 15 | 6  | -   | -     | -     | -      | 27                         |
| 7 | $E_{7(7)}$           | 7 | 21 | 21 | 7   | -     | -     | -      | 56                         |
| 8 | $E_{8(8)}$           | 8 | 28 | 56 | 56  | 56    | 28    | 8      | <b>248</b>                 |

Для построения ExFT, как теории, инвариантной относительно диффеоморфизмов на обобщенном пространстве, прежде всего необходимо определить эти диффеомрфизмы.

Начнем с обобщенных диффеоморфизмов внутреннего пространства (внутренних обобщенных диффеоморфизмов). Для их определения в обобщенной геометрии ExFT с тензорами, имеющими индексы как во внешнем, так и в обобщенном пространстве, вводится обобщенная производная Ли для обобщенных векторов [32, 33, 34, 35, 36]

$$\delta_{\Lambda}V^{\mathcal{M}} = \underbrace{\Lambda^{\mathcal{N}}\partial_{\mathcal{N}}V^{\mathcal{M}} - V^{\mathcal{N}}\partial_{\mathcal{N}}\Lambda^{\mathcal{M}}}_{L_{\Lambda}V^{\mathcal{M}}} + Y^{\mathcal{M}\mathcal{N}} \,_{\mathcal{KL}}\partial_{\mathcal{N}}\Lambda^{\mathcal{K}}V^{\mathcal{L}} = \mathcal{L}_{\Lambda}V^{\mathcal{M}} = [\Lambda, V]_{D}^{\mathcal{M}}, \tag{1.6}$$

где  $[\bullet, \bullet]_D$  - скобка Дорфмана,  $\Lambda^{\mathcal{M}} = \Lambda^{\mathcal{M}}(x^{\mu}, \mathbb{X}^{\mathcal{M}})$  - параметр диффеоморфизма, а тензор  $Y^{\mathcal{M}\mathcal{N}}_{\mathcal{KL}}$  может быть записан в общем виде

$$Y^{\mathcal{M}\mathcal{N}}{}_{\mathcal{K}\mathcal{L}} = \delta^{\mathcal{M}}_{\mathcal{K}}\delta^{\mathcal{N}}_{\mathcal{L}} - \alpha_d \mathbb{P}^{\mathcal{M}}_{(adj) \mathcal{L}}{}^{\mathcal{N}}{}_{\mathcal{K}} + \beta_d \delta^{\mathcal{M}}_{\mathcal{L}}\delta^{\mathcal{N}}_{\mathcal{K}}, \qquad (1.7)$$

$$\delta_{\Lambda}V^{\mathcal{M}} = \Lambda^{\mathcal{N}}\partial_{\mathcal{N}}V^{\mathcal{M}} - \alpha_{d}\mathbb{P}^{\mathcal{M}}_{(adj)}\,\mathcal{L}^{\mathcal{N}}\,\mathcal{K}\partial_{\mathcal{N}}\Lambda^{\mathcal{K}}V^{\mathcal{L}} + \beta_{d}\partial_{\mathcal{K}}\Lambda^{\mathcal{K}}V^{\mathcal{M}} = \mathcal{L}_{\Lambda}V^{\mathcal{M}} = [\Lambda, V]^{\mathcal{M}}_{D}, \qquad (1.8)$$

здесь  $\alpha_d$ ,  $\beta_d$  - некоторые коэффициенты ( $\beta_d$  называется весом относительно внутренних обобщенных диффеоморфизмов), а  $\mathbb{P}^{\mathcal{M}}_{(adj) \mathcal{L}} {}^{\mathcal{N}} \kappa$  - проектор на присоединенное представление группы U-дуальности.

∜

Из требования замкнутости алгебры

$$[\mathcal{L}_{\Lambda_1}, \mathcal{L}_{\Lambda_2}] = \mathcal{L}_{[\Lambda_1, \Lambda_2]_E}, \tag{1.9}$$

где  $[\bullet,\bullet]_E$  - E-скобка, являющаяся аналагом скобки Куранта для DFT, имеет вид

$$[\Lambda_1, \Lambda_2]_E = [\Lambda_1, \Lambda_2]_D - \frac{1}{2} Y^{\mathcal{M}\mathcal{N}}{}_{\mathcal{K}\mathcal{L}} \partial_{\mathcal{N}}(\Lambda_1^{\mathcal{K}} \Lambda_2^{\mathcal{L}}), \qquad (1.10)$$

получаются ограничения на Y-тензор, однозначно фиксирующие его (Таблица.3, выражения для Y-тензоров для различных случаев были построены в [36], отметим, что для  $\beta_d$  получено общее выражение  $\beta_d = \frac{1}{9-d}$ ), и уравнение проекции

$$Y^{\mathcal{M}\mathcal{N}}{}_{\mathcal{K}\mathcal{L}}\partial_{\mathcal{M}} \bullet \otimes \partial_{\mathcal{N}} \bullet = 0, \tag{1.11}$$

где вместо • могут стоять произвольные поля теории. Уравнение проекции накладывает  $\mathcal{R}_{\mathbb{X}} - d$ условий на поля, таким образом проецируя их из обобщенного пространства размерности  $\mathcal{R}_{\mathbb{X}}$  в физическое пространство размерности d.

Далее мы также будем рассматривать и поля, которые преобразуются с весом  $\lambda$ , отличным от  $\beta_d$ , при действии обобщенных диффеоморфизмов. Под обобщенной производной Ли для таких полей мы будем подразумевать

$$\delta_{\Lambda} V^{\mathcal{M}_{1}...\mathcal{M}_{q}} = \Lambda^{\mathcal{N}} \partial_{\mathcal{N}} V^{\mathcal{M}_{1}...\mathcal{M}_{q}} - \alpha_{d} \mathbb{P}^{\mathcal{M}_{1}}_{(adj) \mathcal{L}_{1}} {}^{\mathcal{N}}_{\mathcal{K}} \partial_{\mathcal{N}} \Lambda^{\mathcal{K}} V^{\mathcal{L}_{1}\mathcal{M}_{2}...\mathcal{M}_{q}} - \alpha_{d} \mathbb{P}^{\mathcal{M}_{q}}_{(adj) \mathcal{L}_{q}} {}^{\mathcal{N}}_{\mathcal{K}} \partial_{\mathcal{N}} \Lambda^{\mathcal{K}} V^{\mathcal{M}_{1}...\mathcal{M}_{q-1}\mathcal{L}_{q}} + \lambda [V^{\mathcal{M}_{1}...\mathcal{M}_{q}}] \partial_{\mathcal{K}} \Lambda^{\mathcal{K}} V^{\mathcal{M}} = \mathcal{L}_{\Lambda} V^{\mathcal{M}} = [\Lambda, V]_{D}^{\mathcal{M}}, \quad (1.12)$$

и аналогично для тензоров с обобщенными ковекторными индексами.

Таблица 3: *Y*-тензор для различных групп *U*-дуальности М-теории на торе  $\mathbb{T}^d$  и для O(d, d) группы *T*-дуальности теории струн на торе  $\mathbb{T}^d$ . (где  $\mathscr{A}$  индекс представления **10** группы SO(5,5), а  $\mathcal{R}_{\mathbb{X}}$  размерность обобщенного пространства)[31, 36].

| Группа симметрии | <i>Y</i> -тензор                                                                                                                                                                                                                                                       | $\mathcal{R}_{\mathbb{X}}$ |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| O(d,d)           | $Y^{\mathcal{M}\mathcal{N}}_{\ \mathcal{K}\mathcal{L}} = \eta^{\mathcal{M}\mathcal{N}}\eta_{\mathcal{K}\mathcal{L}}$                                                                                                                                                   | n = 2d                     |
| SL(5)            | $Y^{\mathcal{M}\mathcal{N}}_{\mathcal{K}\mathcal{L}} = \epsilon^{M\mathcal{M}\mathcal{N}} \epsilon_{M\mathcal{K}\mathcal{L}}$                                                                                                                                          | n = 10                     |
| SO(5,5)          | $Y^{\mathcal{MN}}_{\mathcal{KL}} = \frac{1}{2} (\gamma^{\mathscr{A}})^{\mathcal{MN}} (\gamma_{\mathscr{A}})_{\mathcal{KL}}$                                                                                                                                            | n = 16                     |
| $E_{6(6)}$       | $Y^{\mathcal{M}\mathcal{N}}_{\mathcal{K}\mathcal{L}} = 10d^{\mathcal{M}\mathcal{N}\mathcal{R}}d_{\mathcal{K}\mathcal{L}\mathcal{R}}$                                                                                                                                   | n = 27                     |
| $E_{7(7)}$       | $Y^{\mathcal{M}\mathcal{N}}_{\mathcal{K}\mathcal{L}} = 12c^{\mathcal{M}\mathcal{N}}_{\mathcal{K}\mathcal{L}} + \delta^{(\mathcal{M}}_{\mathcal{K}}\delta^{\mathcal{N})}_{\mathcal{L}} + \frac{1}{2}\epsilon^{\mathcal{M}\mathcal{N}}\epsilon_{\mathcal{K}\mathcal{L}}$ | n = 56                     |

Для построения диффеоморфизмов на внешнем пространстве (внешних обобщенных диффеоморфизмов) необходимо ковариантизовать производные по координатам внешнего пространства относительно внутренних обобщенных диффеомрфизмов

$$\mathcal{D}_{\mu} = \partial_{\mu} - \mathcal{L}_{A_{\mu}},\tag{1.13}$$

здесь  $A^{\mathcal{M}}_{\mu}$  - обобщенное векторное поле, играющее роль обобщенной связности, и преобразующееся как

$$\delta_{\Lambda} A^{\mathcal{M}}_{\mu} = \partial_{\mu} \Lambda^{\mathcal{M}} - \mathcal{L}_{A_{\mu}} \Lambda^{\mathcal{M}} = \mathcal{D}_{\mu} \Lambda^{\mathcal{M}}.$$
(1.14)

Полевой состав теории - 1) репер внешнего пространства  $e^{\overline{\mu}}_{\mu} (g_{\mu\nu} = e^{\overline{\mu}}_{\mu} e^{\overline{\nu}}_{\nu} \eta_{\overline{\mu}\overline{\nu}})$ , являющийся скаляром с весом  $\lambda[e^{\overline{\mu}}_{\mu}] = \beta_d$  относительно внутренних обобщенных диффеоморфизмов; 2) обобщенная метрика  $\mathcal{M}_{\mathcal{MN}}$ , являющаяся ковариантным обобщенным 2-тензором с весом  $\lambda[\mathcal{M}_{\mathcal{MN}}] = 0$ 

относительно внутренних обобщенных диффеоморфизмов; 3) поля, появляющиеся из тензорной иерархии [40, 41, 42], возникающей при построении тензора напряженности для  $A^{\mathcal{M}}_{\mu}$ 

$$[\mathcal{D}_{\mu}, \mathcal{D}_{\nu}] = -\mathcal{L}_{\mathcal{F}_{\mu\nu}}, \qquad \mathcal{F}_{\mu\nu} \overset{\mathcal{M}}{\longrightarrow} = \underbrace{2\partial_{[\mu}A_{\nu]}^{\mathcal{M}} - [A_{\mu}, A_{\nu}]_{E}^{\mathcal{M}}}_{F_{\mu\nu} \overset{\mathcal{M}}{\longrightarrow}} -Y^{\mathcal{M}\mathcal{N}} \overset{\mathcal{K}\mathcal{L}}{\longrightarrow} \partial_{\mathcal{N}}B_{\mu\nu} \overset{\mathcal{K}\mathcal{L}}{\longrightarrow}, \qquad (1.15)$$

где поле  $B_{\mu\nu}{}^{\mathcal{KL}}$  добавлено, для того, чтобы напряженность  $\mathcal{F}_{\mu\nu}{}^{\mathcal{M}}$  преобразовывалась ковариантно при обобщенных диффеоморфизмах (как обобщенный вектор с весом  $\beta_d$ ). Отметим, что  $B_{\mu\nu}{}^{\mathcal{KL}}$  не дает вклада в обобщенную производную Ли в (1.15), буквально  $\mathcal{L}_{F_{\mu\nu}} = \mathcal{L}_{\mathcal{F}_{\mu\nu}}$ , так как приводит к уравнению проекции (1.11).

Конструируя инвариантный тензор напряженности  $\mathcal{F}_{\mu\nu\rho}^{\mathcal{MK}}$  для  $B_{\mu\nu}^{\mathcal{KL}}$ , аналогично необходимо будет добавить новое поле  $C_{\mu\nu\rho}^{\mathcal{M,KL}}$ 

$$\mathcal{F}_{\mu\nu\rho}{}^{\mathcal{K}\mathcal{L}} = 3\mathcal{D}_{[\mu}B_{\nu\rho]}{}^{\mathcal{K}\mathcal{L}} + \frac{3}{(11-d)(1-2\beta_d)}Y^{\mathcal{K}\mathcal{L}}{}_{\mathcal{M}\mathcal{N}}(A^{\mathcal{M}}_{[\mu}\partial_{\nu}A^{\mathcal{N}}_{\rho} - \frac{1}{3}[A_{[\mu},A_{\nu}]^{(\mathcal{M}}_{E}A^{\mathcal{N}}_{\rho]}) - 3(\partial_{\mathcal{N}}C_{\mu\nu\rho}{}^{\mathcal{N},\mathcal{K}\mathcal{L}} - Y^{\mathcal{K}\mathcal{L}}{}_{\mathcal{M}\mathcal{N}}\partial_{\mathcal{Q}}C_{\mu\nu\rho}{}^{\mathcal{N},\mathcal{M}\mathcal{Q}}), \quad (1.16)$$

и так далее

$$\mathcal{F}_{\mu\nu\rho\sigma}^{\mathcal{M},\mathcal{KL}} = 4\mathcal{D}_{[\mu}C_{\nu\rho\sigma]}^{\mathcal{M},\mathcal{KL}} + (2B_{[\mu\nu}^{\mathcal{KL}}\mathcal{F}_{\rho\sigma]}^{\mathcal{M}} - B_{[\mu\nu}^{\mathcal{KL}}Y^{\mathcal{MN}}_{\mathcal{RQ}}\partial_{\mathcal{N}}B_{\rho\sigma]}^{\mathcal{RQ}}) + \frac{4}{3(11-d)(1-2\beta_d)}Y^{\mathcal{KL}}_{\mathcal{NQ}}(A^{\mathcal{M}}_{[\mu}A^{\mathcal{N}}_{\nu}\partial_{\rho}A^{\mathcal{Q}}_{\sigma} - \frac{1}{4}A^{\mathcal{M}}_{[\mu}[A_{\nu},A_{\rho}]^{\mathcal{N}}_{E}A^{\mathcal{Q}}_{\sigma]}).$$
(1.17)

Связь преобразований нововведенных полей с преобразованиями  $A^{\mathcal{M}}_{\mu}$  относительно внутренних диффеоморфизмов дается формулами [40, 41, 42]

$$\Delta A^{\mathcal{M}}_{\mu} = \delta A^{\mathcal{M}}_{\mu},$$
  

$$\Delta B_{\mu\nu}{}^{\mathcal{K}\mathcal{L}} = \delta B_{\mu\nu}{}^{\mathcal{K}\mathcal{L}} - \frac{1}{6} Y^{\mathcal{K}\mathcal{L}}{}_{\mathcal{M}\mathcal{N}} A^{\mathcal{M}}_{[\mu} \delta A^{\mathcal{N}}_{\nu]},$$
  

$$\Delta C_{\mu\nu\rho}{}^{\mathcal{N},\mathcal{K}\mathcal{L}} = \delta C_{\mu\nu\rho}{}^{\mathcal{N},\mathcal{K}\mathcal{L}} - \delta A^{\mathcal{N}}_{[\mu} B_{\nu\rho]}{}^{\mathcal{K}\mathcal{L}} - \frac{1}{18} Y^{\mathcal{K}\mathcal{L}}{}_{\mathcal{R}\mathcal{Q}} A^{\mathcal{N}}_{[\mu} A^{\mathcal{R}}_{\nu} \delta A^{\mathcal{Q}}_{\rho]}.$$
(1.18)

На некотором этапе тензорная иерархия прерывается, так как появляющиеся поля могут быть дуализованы в уже имеющиеся младшие формы (аналогично тому, как это реализовано в (1.5)). Соответственно их тензоры напряженности не входят в лагранжиан и не нуждаются в ковариантизации. Старшие тензоры напряженности связаны с младшим через тождества Бьянки (с учетом проекции (1.11)) [40, 41, 42]

$$3\mathcal{D}_{[\mu}\mathcal{F}_{\nu\rho\sigma]}^{\mathcal{M}} = -Y^{\mathcal{M}\mathcal{N}}_{\mathcal{K}\mathcal{L}}\partial_{\mathcal{N}}\mathcal{F}_{\mu\nu\rho}^{\mathcal{K}\mathcal{L}},$$
  

$$4\mathcal{D}_{[\mu}\mathcal{F}_{\nu\rho\sigma]}^{\mathcal{K}\mathcal{L}} = \frac{3}{(11-d)(1-2\beta_d)}Y^{\mathcal{K}\mathcal{L}}_{\mathcal{M}\mathcal{N}}\mathcal{F}_{\mu\nu}^{\mathcal{M}}\mathcal{F}_{\rho\sigma}^{\mathcal{N}} - 3(\partial_{\mathcal{N}}\mathcal{F}_{\mu\nu\rho\sigma}^{\mathcal{N},\mathcal{K}\mathcal{L}} - Y^{\mathcal{K}\mathcal{L}}_{\mathcal{M}\mathcal{N}}\partial_{\mathcal{Q}}\mathcal{F}_{\mu\nu\rho\sigma}^{\mathcal{N},\mathcal{M}\mathcal{Q}}),$$
  
...
(1.19)

Таким образом полевой состав теории:

$$\{e^{\overline{\mu}}_{\mu}, \mathcal{M}_{\mathcal{M}\mathcal{N}}, A^{\mathcal{M}}_{\mu}, \underbrace{B_{\mu\nu}}^{\mathcal{K}\mathcal{L}}, \ldots \}.$$
(1.20)

поля тензорной иерархии

Теперь, с помощью ковариантной производной (1.13), мы можем определить внешние обобщенные диффеоморфизмы с параметрами  $\xi^{\mu} = \xi^{\mu}(x^{\mu}, \mathbb{X}^{\mathcal{M}})$  [40, 41, 42]

$$\delta_{\xi} e^{\overline{\mu}}_{\mu} = \xi^{\nu} \mathcal{D}_{\nu} e^{\overline{\mu}}_{\mu} + \mathcal{D}_{\mu} \xi^{\nu} e^{\overline{\mu}}_{\nu},$$
  

$$\delta_{\xi} \mathcal{M}_{\mathcal{M}\mathcal{N}} = \xi^{\nu} \mathcal{D}_{\nu} \mathcal{M}_{\mathcal{M}\mathcal{N}},$$
  

$$\delta_{\xi} A^{\mathcal{M}}_{\mu} = \xi^{\nu} \mathcal{F}_{\nu\mu}{}^{\mathcal{M}} + \mathcal{M}^{\mathcal{M}\mathcal{N}} g_{\mu\nu} \partial_{\mathcal{N}} \xi^{\nu},$$
  
....
(1.21)

Лагранжиан ExFT строится в два этапа: а) из требования инвариантности отностильно внутренних диффеоморфизмов строятся все возможные комбинации полей теории, преобразующиеся как скаляры с весом  $\lambda = 1$  и дающие при вариации уравнения второго порядка; б) из требования инвариантности относительно внешних диффеоморфизмов фиксируются все относительные коэффициенты комбинаций, полученных в пункте "a".

Используя описанный выше подход, были построены SL(5), SO(5,5),  $E_{6(6)}$ ,  $E_{7(7)}$ ,  $E_{8(8)}$  ExFT [43, 42, 41, 40, 44, 45, 46, 47, 48, 49]. Заметим, что на самом деле теории, построенные таким образом, обладают большей симметрией, а именно  $E_{d(d)} \times \mathbb{R}^+$ .

В завершение отметим, что существует два различных способа параметризации фактор пространства  $E_{d(d)}/\mathbf{K}$ : 1) при помощи генераторов из алгебры Картана и положительных корней (либо отрицательных, либо их комбинации) алгебры  $e_{d(d)}$  следуя [26, 27, 28]; 2) используя нелинейную реализацию, и ее редукции, для полупрямого произведения  $E_{11} \ltimes l_1$ , где  $l_1$  фундаментальное представление  $E_{11}$  [34, 50].

#### 1.3 Исключительная теория поля SL(5)

В этом пункте мы кратко приведем основные результаты и формулы, получающиеся при построении SL(5) ExFT [42] согласно формализму, описанному в Разделе 1.2.

Для SL(5) ExFT компоненты, через которые выражается обобщенная производная Ли (1.6), (1.8), выглядят следующим образом

$$Y^{\mathcal{M}\mathcal{N}}{}_{\mathcal{K}\mathcal{L}} = \epsilon^{M\mathcal{M}\mathcal{N}}\epsilon_{M\mathcal{K}\mathcal{L}} = \epsilon^{MNKLP}\epsilon_{MQRST},$$
  

$$\alpha_4 = 3,$$
  

$$\beta_4 = \frac{1}{5},$$
  

$$\mathbb{P}^{\mathcal{M}}_{(adj)}{}_{\mathcal{L}}{}^{\mathcal{N}}{}_{\mathcal{K}} = (t^i{}_j)^{\mathcal{M}}{}_{\mathcal{L}}(t^i{}_j)^{\mathcal{N}}{}_{\mathcal{K}},$$
(1.22)

где  $\epsilon^{M\mathcal{M}\mathcal{N}} SL(5)$  инвариантный тензор, компоненты которого определяются знакопеременным символом  $\epsilon^{MNKLP}$ ;  $(t^i_{\ j})^{\mathcal{M}}_{\mathcal{L}}$  - генераторы представления **10** SL(5) (смотри связь генераторов представления **10** SL(5) и представления **5** SL(5) в Приложении **Б**);  $Y^{\mathcal{M}\mathcal{N}}_{\mathcal{K}\mathcal{L}}$  и  $\mathbb{P}^{\mathcal{M}}_{(adj)} \mathcal{L}^{\mathcal{N}}_{\mathcal{K}}$  связаны соотношением (1.7) (Приложение **Б**). Подставляя все компоненты в обобщенную производную Ли (1.6) и разбивая обобщенный вектор (ковектор) в представлении **10** на два вектора (ковектора) в фундаментальном представлении **5** SL(5), мы можем найти действие обобщенных диффеоморфизмов на фундаментальное представление

$$\delta_{\Lambda}V^{M} = \frac{1}{2}\Lambda^{KL}\partial_{KL}V^{M} - V^{K}\partial_{KL}\Lambda^{ML} + \frac{1}{4}V^{M}\partial_{KL}\Lambda^{KL},$$
  

$$\delta_{\Lambda}V_{M} = \frac{1}{2}\Lambda^{KL}\partial_{KL}V_{M} + V_{K}\partial_{ML}\Lambda^{KL} - \frac{1}{4}V_{M}\partial_{KL}\Lambda^{KL}.$$
(1.23)

Условие проекции (1.11) для теории SL(5) записывается

$$\epsilon^{MNKLP}\partial_{MN} \bullet \partial_{KL} \bullet = 0, \qquad (1.24)$$

везде далее мы подразумеваем, что (1.24) решено следующим образом -  $\partial_{mn} = 0$ , что убирает зависимость от 6 из 10 обобщенных координат, и проецирует теорию из 10+7 в 4+7=11 мерное пространство ( $m, n = 1, \ldots, 4$ , Приложение А).

Полевой состав SL(5) ExFT

$$\{e^{\overline{\mu}}_{\mu}, A_{\mu}{}^{MN}, B_{\mu\nu M}, m_{MN}\},$$
 (1.25)

где в обобщенных векторах мы перешли от представления **10** SL(5) к представлению **5** SL(5) (Приложение A), и вместо рассмотренных в Разделе **1**.2 обобщенной метрики  $\mathcal{M}_{\mathcal{MN}}$  и полей  $B_{\mu\nu}{}^{\kappa\mathcal{L}}$ ,  $C_{\mu\nu\rho}{}^{\mathcal{M,K\mathcal{L}}}$ , приходящих из тензорной иерархии, мы ввели

$$m_{MN} : \mathcal{M}_{\mathcal{MN}} \to \mathcal{M}_{MNKL} = m_{MK}m_{NL} - m_{ML}m_{NK},$$

$$A_{\mu}^{MN} : A_{\mu}^{MN} = -A_{\mu}^{NM},$$

$$B_{\mu\nu M} : B_{\mu\nu M} = 2\epsilon_{MNKLP}B_{\mu\nu}^{NKLP} = 8\epsilon_{M\mathcal{MN}}B_{\mu\nu}^{\mathcal{MN}},$$

$$C_{\mu\nu\rho}^{M} : C_{\mu\nu\rho}^{M} = -6\epsilon_{NKLPQ}C_{\mu\nu\rho}^{MN,KLPQ},$$

$$(1.26)$$

соответственно тензоры напряженности для переобозначенных полей выражаются через (1.16), (1.17)

$$\begin{aligned}
\mathcal{F}_{\mu\nu}{}^{MN} & : & \mathcal{F}_{\mu\nu}{}^{MN} = -\mathcal{F}_{\mu\nu}{}^{NM}, \\
\mathcal{F}_{\mu\nu\rho M} & : & \mathcal{F}_{\mu\nu\rho M} = 8\epsilon_{MMN}\mathcal{F}_{\mu\nu\rho}{}^{MN}, \\
\mathcal{F}_{\mu\nu\rho\lambda}{}^{M} & : & \mathcal{F}_{\mu\nu\rho\lambda}{}^{M} = -6\epsilon_{NKLPQ}\mathcal{F}_{\mu\nu\rho\lambda}{}^{MN,KLPQ}.
\end{aligned}$$
(1.27)

До наложения условия проекции поля (1.25) зависят от 7 координат  $y^{\mu}$  внешнего пространства и 10 координат  $\mathbb{X}^{MN}$  внутреннего обобщенного пространства.  $e^{\overline{\mu}}_{\mu}$  - репер внешнего пространства с весом  $\lambda[e^{\overline{\mu}}_{\mu}] = \beta_4$  относительно обощенных диффеоморфизмов.

$$\delta_{\Lambda} e^{\overline{\mu}}_{\mu} = \frac{1}{2} \Lambda^{KL} \partial_{KL} e^{\overline{\mu}}_{\mu} + \frac{1}{10} e^{\overline{\mu}}_{\mu} \partial_{KL} \Lambda^{KL}.$$
(1.28)

Из требования, что обобщенная метрика  $\mathcal{M}_{\mathcal{MN}}$ , является ковариантным обобщенным 2тензором с весом  $\lambda[\mathcal{M}_{\mathcal{MN}}] = 0$  относительно внутренних обобщенных диффеоморфизмов, следует, что  $m_{MN}$  - обобщенная метрика ExFT, являющаяся набором скалярных полей с точки зрения d = 7 теории, имеет вес  $\lambda[m_{MN}] = 0$  относительно обобщенных диффеоморфизмов

$$\mathcal{L}_{\Lambda}m_{MN} = \frac{1}{2}\Lambda^{KL}\partial_{KL}m_{MN} + (\partial_{MK}\Lambda^{LK})m_{LN} + (\partial_{NK}\Lambda^{LK})m_{ML} - \frac{2}{5}(\partial_{KL}\Lambda^{KL})m_{MN}.$$
(1.29)

Напряженности  $\mathcal{F}_{\mu\nu}{}^{MN}$ ,  $\mathcal{F}_{\mu\nu\rho\lambda}{}^{M}$  и  $\mathcal{F}_{\mu\nu\rho M}$  преобразуются при обобщенных диффеоморфизмах как обощенный 2-тензор, вектор и ковектор соответственно

$$\delta_{\Lambda} \mathcal{F}_{\mu\nu}{}^{MN} = \frac{1}{2} \Lambda^{KL} \partial_{KL} \mathcal{F}_{\mu\nu}{}^{MN} - \mathcal{F}_{\mu\nu}{}^{KN} \partial_{KL} \Lambda^{ML} - \mathcal{F}_{\mu\nu}{}^{MK} \partial_{KL} \Lambda^{NL} + \frac{1}{2} \mathcal{F}_{\mu\nu}{}^{MN} \partial_{KL} \Lambda^{KL},$$
  

$$\delta_{\Lambda} \mathcal{F}_{\mu\nu\rho\lambda}{}^{M} = \frac{1}{2} \Lambda^{KL} \partial_{KL} \mathcal{F}_{\mu\nu\rho\lambda}{}^{M} - \mathcal{F}_{\mu\nu\rho\lambda}{}^{K} \partial_{KL} \Lambda^{ML} + \frac{1}{4} \mathcal{F}_{\mu\nu\rho\lambda}{}^{M} \partial_{KL} \Lambda^{KL},$$
  

$$\delta_{\Lambda} \mathcal{F}_{\mu\nu\rhoM} = \frac{1}{2} \Lambda^{KL} \partial_{KL} \mathcal{F}_{\mu\nu\rhoM} + \mathcal{F}_{\mu\nu\rhoK} \partial_{ML} \Lambda^{KL} - \frac{1}{4} \mathcal{F}_{\mu\nu\rhoM} \partial_{KL} \Lambda^{KL}.$$
  
(1.30)

Лагранжиан SL(5) ExFT [42]

$$e^{-1}\mathcal{L} = \hat{\mathcal{R}}[g_{(7)}] \mp \frac{1}{8} m_{MN} m_{KL} \mathcal{F}_{\mu\nu}{}^{MK} \mathcal{F}^{\mu\nu NL} + \frac{1}{4} g^{\mu\nu} \mathcal{D}_{\mu} m_{MN} \mathcal{D}_{\nu} m^{MN} + e^{-1} \mathcal{L}_{sc} + \frac{1}{3 \cdot (16)^2} m^{MN} \mathcal{F}_{\mu\nu\rho M} \mathcal{F}^{\mu\nu\rho}{}_N + e^{-1} \mathcal{L}_{top},$$
(1.31)

где  $e = (\det e^{\overline{\mu}}_{\mu}), g_{\mu\nu} = e^{\overline{\mu}}_{\mu} e^{\overline{\nu}}_{\nu} \eta_{\overline{\mu}\overline{\nu}},$  и скалярная часть дается выражением

$$e^{-1}\mathcal{L}_{sc} = \pm \left(\frac{1}{8}\partial_{MN}m_{PQ}\partial_{KL}m^{PQ}m^{MK}m^{NL} + \frac{1}{2}\partial_{MN}m_{PQ}\partial_{KL}m^{MP}m^{NK}m^{LQ} + \frac{1}{2}\partial_{MN}m^{LN}\partial_{KL}m^{MK} + \frac{1}{2}m^{MK}\partial_{MN}m^{NL}(g^{\mu\nu}\partial_{KL}g_{\mu\nu}) + \frac{1}{8}m^{MK}m^{NL}(g^{\mu\nu}\partial_{MN}g_{\mu\nu})(g^{\rho\sigma}\partial_{KL}g_{\rho\sigma}) + \frac{1}{8}m^{MK}m^{NL}\partial_{MN}g^{\mu\nu}\partial_{KL}g_{\mu\nu}\right).$$

$$(1.32)$$

Здесь и везде далее верхний знак отвечает случаю, когда внешнее d = 7 пространство лоренцевой сигнатуры, а нижний знак - евклидовой сигнатуры (мы подразумеваем что общая сигнатура 11-ти мерного пространства лоренцева). Случай, когда времениподобное направление лежит во внутреннем пространстве ExFT (нижний знак), отвечает времениподобной *U*дуальности [51, 52, 53]. Вне зависимости от выбора знака группой *U*-дуальности остается SL(5), изменяется только локальная группа дуальности **K**.

Заметим, что лагранжиан (1.31) не содержит кинетического члена  $C_{\mu\nu\rho}{}^{M}$ . Более того,  $C_{\mu\nu\rho}{}^{M}$  входит в лагранжиан только через топологический член и  $\mathcal{F}_{\mu\nu\rho N}$ . Варьируя лагранжиан по  $C_{\mu\nu\rho}{}^{M}$ , мы получим уравнение дуальности (1.5), (1.33) между  $C_{\mu\nu\rho}{}^{M}$  и  $B_{\mu\nu M}$ , как мы этого и ожидали при рассмотрении редукции на Рисунке.3. Таким образом  $C_{\mu\nu\rho}{}^{M}$  не является динамическим, поэтому мы не включили его в (1.25), и именно по этой причине тензорная иерархия SL(5) прерывается на этом поле [42].

$$m^{MN} \mathcal{F}^{\mu\nu\rho}{}_N = \frac{1}{4!} \epsilon^{\mu\nu\rho\lambda\sigma\eta\delta} \mathcal{F}_{\lambda\sigma\eta\delta}{}^M.$$
(1.33)

После разбиения фундаментального индекса SL(5) на  $M = 1, \ldots, 4, 5 = (m, 5)$ , компоненты обобщенной метрики могут быть параметризованы в следующем виде

$$m_{MN} = h^{\frac{1}{10}} \begin{bmatrix} h^{-\frac{1}{2}}h_{mn} & -V_m \\ & & \\ -V_n & \pm h^{\frac{1}{2}}(1\pm V_k V^k) \end{bmatrix}, \quad m^{MN} = h^{-\frac{1}{10}} \begin{bmatrix} h^{\frac{1}{2}}(h^{mn}\pm V^m V^n) & \pm V^m \\ & & \\ \pm V_n & \pm h^{-\frac{1}{2}} \end{bmatrix}, \quad (1.34)$$

где  $V^m = \frac{1}{3!} \varepsilon^{mnkl} C_{nkl}$  и  $h = \det h_{mn}$ . В Разделе 2 поля  $h_{mn}$  и  $C_{mnk}$  будут связаны с соответствующими компонентами обыкновенной метрики и 3-формы на d = 4 пространстве.

#### 1.4 Деформации решений уравнений 11-ти мерной супергравитации

Вопрос, которым мы интересуемся, и который является основополагающим в нашем исследовании можно сформулировать следующим образом:

Возможно ли построить деформации решений 11-ти мерной супергравитации при помощи ExFT и будут ли они удовлетворять некоторому обобщению уравнения Янга-Бакстера, если потребовать, что деформированное решение остается решением, как это было сделано для 10-ти мерной супергравитации при помощи DFT (Раздел 1.1)?

Мы исследуем этот вопрос на примере SL(5) ExFT, для которой обобщенная метрика  $m_{MN}$  может быть параметризована двумя способами, аналогично тому как это было в случае DFT. 1-ый способ, так называемый *C*-фрейм ExFT, соответствует верхнетреугольному обобщенному реперу (1.34), параметризуемому полями  $(h_{mn}, C_{mnk})$ , и для этого случая уравнения исключительной теории поля будут совпадать с уравнениями 11-ти мерной супергравитации. 2ой способ, *C*- $\Omega$ -фрейм ExFT, отвечает смешанному реперу (3.11), параметризуемому полями  $(h_{mn}, C_{mnk}, \Omega^{mnk})$ , уравнения для него - общие уравнения ExFT.



Рис. 4: Связь фона  $(G_{\mu\nu}, h_{mn}, C_{mnk})$ , решающего уравнения 11D супергравитации, и его деформации  $(\tilde{g}_{\mu\nu}, \tilde{h}_{mn}, \tilde{C}_{mnk})$ . С-фрейм - 11D супергравитация, С- $\Omega$ -фрейм - ExFT. Обобщенная деформация Янга-Бакстера действует на решение супергравитации, и в данном случае интерпретируется, как композиция деформации с параметром  $\Omega^{mnk}$  и открыто/замкнутого отображения. Требования выполнений уравнений супергравитации для деформированного фона накладывает условия на  $\Omega^{mnk}$ .

Способ построения деформации схематически изображен на Рисунке.4. Для этого, мы отображаем решение 11-ти мерной супергравитации в решение ExFT, используя параметризацию в C-фрейме ( $g_{\mu\nu}, h_{mn}, C_{mnk}$ ). Затем, мы добавляем к нему в C- $\Omega$ -фрейме деформацию в виде параметра  $\Omega^{mnk}$ . Тогда мы получаем набор полей ( $g_{\mu\nu}, h_{mn}, C_{mnk}, \Omega^{mnk}$ ), где первые три фиксированы, так как мы деформируем фиксированное решение. Теперь мы можем найти ( $\tilde{g}_{\mu\nu}, \tilde{h}_{mn}, \tilde{C}_{mnk}$ ) в C-фрейме. Переход от ( $g_{\mu\nu}, h_{mn}, C_{mnk}, \Omega^{mnk}$ ) к ( $\tilde{g}_{\mu\nu}, \tilde{h}_{mn}, \tilde{C}_{mnk}$ ) мы будем называть обобщением открыто/закрытого отображения для ExFT, а переход от изначального решения ( $g_{\mu\nu}, h_{mn}, C_{mnk}$ ) к ( $\tilde{g}_{\mu\nu}, \tilde{h}_{mn}, \tilde{C}_{mnk}$ ) обобщенной деформацией Янга-Бакстера [54]. Наконец из требования, что ( $\tilde{g}_{\mu\nu}, \tilde{h}_{mn}, \tilde{C}_{mnk}$ ) также является решением 11-ти мерной супергравитации, мы получаем ограничения на параметр деформации  $\Omega^{mnk}$ . Заметим, что уравнения 11-ти мерной супергравитации на ( $\tilde{g}_{\mu\nu}, \tilde{h}_{mn}, \tilde{C}_{mnk}$ ) эквивалентны уравнениям ExFT на ( $g_{\mu\nu}, h_{mn}, C_{mnk}, \Omega^{mnk}$ ), поэтому условие на  $\Omega^{mnk}$  можно искать из последних.

Данная работа организована следующим образом. В Разделе 2 мы сформулируем соответствие между полями ExFT и 7 + 4 разбиения 11-ти мерной супергравитации. В Разделе 3 мы

построим согласованную редукцию ExFT на пространствах вида  $M_{11} = M_4 \times M_7$  с метрикой на  $M_7$ , не зависящей от координат на  $M_4$ . Мы сконструируем обобщенную деформацию Янга-Бакстера для решения супергравитации при помощи три-вектора  $\Omega^{mnk}$  на  $M_4$  и получим уравнения движения ExFT, выполнение которых эквивалентно тому, что деформированный фон также является решением супергравитации. В Разделе 4 мы применим формализм Раздела 3 для решения  $AdS_4 \times \mathbb{S}^7$  и предъявим найденные нами новые деформированные решения. В Разделах 5,6 мы подеведем итоги и обсудим полученные результаты.

Основная часть данной работы соответствует опубликованной статье [55] в соавторстве с Э.Т. Мусаевым и И.В. Бахматовым.

# 2 Вложение 11-ти мерной супергравитации в SL(5) ExFT

Для того, чтобы построить соответствие между полями 11-ти мерной супергравитации и SL(5) ExFT, необходимо рассмотреть редукцию Калуцы-Клейна при 7 + 4 разбиении, и организовать получающиеся поля в комбинации, инвариантные относительно обобщенной производной Ли теории SL(5). При выполнении данной процедуры мы следуем тем же самым шагам, что были сделаны при рассмотрении теории  $E_{6(6)}$  [40], за исключением некоторых изменений из-за особенностей группы SL(5).

#### 2.1 Действие 11-ти мерной супергравитации

Здесь мы приведем бозонную часть действия 11-ти мерной супергравитации

$$S_{11} = \int d^{11} x E\left(\underbrace{R}_{I} \underbrace{-\frac{1}{48} F^{\hat{\mu}\hat{\nu}\hat{\rho}\hat{\sigma}} F_{\hat{\mu}\hat{\nu}\hat{\rho}\hat{\sigma}}}_{II} \underbrace{+\frac{1}{(144)^2} E^{-1} \varepsilon^{\hat{\mu}_1...\hat{\mu}_{11}} F_{\hat{\mu}_1...\hat{\mu}_4} F_{\hat{\mu}_5...\hat{\mu}_8} C_{\hat{\mu}_9\hat{\mu}_{10}\hat{\mu}_{11}}}_{III}\right), \qquad (2.1)$$

где  $E_{\hat{\mu}}^{\hat{\alpha}}$  репер,  $\hat{\mu}, \hat{\nu}...$  искривленные, а  $\hat{\alpha}, \hat{\beta}...$  плоские 11-ти мерные индексы (Приложение A), и

$$F_{\hat{\mu}\hat{\nu}\hat{\rho}\hat{\sigma}} = 4\partial_{[\hat{\mu}}C_{\hat{\nu}\hat{\rho}\hat{\sigma}]}.$$
(2.2)

Сответственно части действия (2.1) мы называем следующим образом: I — действие Эйнштейна-Гильберта, II — кинетический член для 3-форм, III — топологический член.

Действие (2.1) инвариантно относительно 11-ти мерных диффеоморфизмов и калибровочных преобразований  $\delta C_{\hat{\nu}\hat{\rho}\hat{\sigma}} = 3\partial_{[\hat{\nu}}\Lambda_{\hat{\rho}\hat{\sigma}]}$ . Заметим, что в отличие от [40] мы пользуемся стандартным действием супергравитации, которое получается из действия написанного в [40] заменой  $C_{\hat{\nu}\hat{\rho}\hat{\sigma}} \rightarrow \frac{1}{2}C_{\hat{\nu}\hat{\rho}\hat{\sigma}}$ .

#### 2.2 Действие Эйнштейна-Гильберта

Разбивая 11-ти мерные индексы на индексы внешнего (размерности n = 7) и индексы внутреннего (размерности d = 4) пространства, получим  $\hat{\mu} = (\mu, m)$  для искривленных и  $\hat{\alpha} = (\overline{\mu}, \overline{m})$  для плоских индексов (Приложение А). Теперь мы можем переписать репер

$$E_{\hat{\mu}}^{\hat{\alpha}} = \begin{pmatrix} \phi^{\gamma} e_{\mu}^{\overline{\mu}} & A_{\mu}^{m} \phi_{m}^{\overline{m}} \\ 0 & \phi_{m}^{\overline{m}} \end{pmatrix}, \qquad (2.3)$$

где  $\phi = \det \phi_m^{\overline{m}}$ . Выбор верхнетреугольного вида репера фиксирует калибровку локальной группы Лоренца. Соответственно обратный репер

$$E_{\hat{\alpha}}^{\hat{\mu}} = \begin{pmatrix} \phi^{-\gamma} e_{\overline{\mu}}{}^{\mu} & -\phi^{-\gamma} e_{\overline{\mu}}{}^{\nu} A_{\nu}{}^{m} \\ 0 & \phi_{\overline{m}}{}^{m} \end{pmatrix}, \qquad (2.4)$$

здесь постоянная

$$\gamma = -\frac{1}{n-2} , \qquad (2.5)$$

где п<br/> — размерность внешнего пространства, которая для нашего случа<br/>яn=7.

Внутренняя часть 11-ти мерных диффеоморфизмов (мы разбиваем 11-ти мерные диффеоморфизм следующим образом  $\xi^{\hat{\mu}} = (\xi^{\mu}, \Lambda^m)$ )

$$\delta_{\Lambda} e_{\mu}{}^{\overline{\mu}} = \Lambda^{m} \partial_{m} e_{\mu}{}^{\overline{\mu}} - \gamma \,\partial_{m} \Lambda^{m} e_{\mu}{}^{\overline{\mu}} ,$$
  

$$\delta_{\Lambda} \phi_{m}{}^{\overline{m}} = \Lambda^{n} \partial_{n} \phi_{m}{}^{\overline{m}} + \partial_{m} \Lambda^{n} \phi_{n}{}^{\overline{m}} ,$$
  

$$\delta_{\Lambda} \phi = \Lambda^{n} \partial_{n} \phi + \partial_{n} \Lambda^{n} \phi ,$$
  

$$\delta_{\Lambda} A_{\mu}{}^{m} = \partial_{\mu} \Lambda^{m} - A_{\mu}{}^{n} \partial_{n} \Lambda^{m} + \Lambda^{n} \partial_{n} A_{\mu}{}^{m} ,$$
  
(2.6)

и в соответствии с (2.6) мы можем ввести ковариантные производные  $D_{\mu} = \partial_{\mu} - \mathcal{L}_{A_{\mu} m}$ 

$$D_{\mu}e_{\nu}^{\overline{\mu}} = \partial_{\mu}e_{\nu}^{\overline{\mu}} - A_{\mu}^{\ m}\partial_{m}e_{\nu}^{\overline{\mu}} + \gamma\partial_{m}A_{\mu}^{\ m}e_{\nu}^{\overline{\mu}},$$
  

$$D_{\mu}\phi_{m}^{\ \overline{m}} = \partial_{\mu}\phi_{m}^{\ \overline{m}} - A_{\mu}^{\ n}\partial_{n}\phi_{m}^{\ \overline{m}} - \partial_{m}A_{\mu}^{\ n}\phi_{n}^{\ \overline{m}},$$
  

$$F_{\mu\nu}^{\ m} = \partial_{\mu}A_{\nu}^{\ m} - \partial_{\nu}A_{\mu}^{\ m} - A_{\mu}^{\ n}\partial_{n}A_{\nu}^{\ m} + A_{\nu}^{\ n}\partial_{n}A_{\mu}^{\ m}.$$
(2.7)

Применяя разбиение (2.3) для действия Эйнштейна–Гильберпа (части действия 11–ти мерной супергравитации), и переписывая все через ковариантные объекты (2.7), получим

$$S_{\rm EH} = \int d^{n}x \, d^{d}y \, e \Big[ \widehat{R} - \frac{1}{4} \phi^{-2\gamma} \phi_{mn} F^{\mu\nu m} F_{\mu\nu}{}^{n} \\ - \frac{1}{2} \phi^{mn} g^{\mu\nu} D_{\mu} \phi_{m}{}^{\overline{m}} D_{\nu} \phi_{n\overline{m}} - \gamma^{2} \left(n-2\right) \phi^{-2} g^{\mu\nu} D_{\mu} \phi D_{\nu} \phi \\ - \frac{1}{2} g^{\mu\nu} (\phi^{\overline{m}m} D_{\mu} \phi_{m}{}^{\overline{n}}) (\phi_{\overline{n}}{}^{n} D_{\nu} \phi_{n\overline{m}}) + e^{-1} V_{\rm EH}(\phi, e) \Big] , \qquad (2.8)$$

здесь  $e = \det e_{\mu}{}^{\overline{\mu}}, g = \det g_{\mu\nu}, \phi_{mn} = \phi_{m\overline{m}}\phi_{n}{}^{\overline{m}}, g_{\mu\nu} = e_{\mu\overline{\mu}}e_{\nu}{}^{\overline{\mu}},$  действие Эйнштейна–Гильберта для внутренней части

$$\phi^{-2\gamma} e^{-1} V_{\rm EH}(h,e) = R(\phi) + \frac{1}{4} \phi^{mn} \left( D_m g^{\mu\nu} D_n g_{\mu\nu} + g^{-1} D_m g g^{-1} D_n g \right) .$$
 (2.9)

где "модифицированный" тензор Римана

$$\widehat{R}_{\mu\nu}^{\ \overline{\mu}\overline{\nu}} = R_{\mu\nu}^{\ \overline{\mu}\overline{\nu}} + F_{\mu\nu}^{\ m} e^{\overline{\mu}\rho} \partial_m e_{\rho}^{\ \overline{\nu}}, \qquad (2.10)$$

который необходим для сохранения локальной SO(1,6) лоренцевой инвариантности. Также, согласно преобразованиям (2.6), мы введем выражение, инвариантное относительно внутренних диффеоморфизмов

$$D_m g_{\mu\nu} = \partial_m g_{\mu\nu} - \frac{1}{5} (\Phi^{-1} \partial_m \Phi) g_{\mu\nu}, \qquad (2.11)$$

где  $\Phi = \det \phi_{mn}$ .

После интегрирования по частям и подстановки  $\gamma = -\frac{1}{5}$ , потенциал  $V_{\rm EH}$  может быть переписан в виде

$$\Phi^{\frac{1}{5}}e^{-1}V_{\rm EH} = \frac{1}{4}\phi^{kl}\partial_{k}\phi^{mn}\partial_{l}\phi_{mn} - \frac{1}{2}\phi^{kl}\partial_{k}\phi^{mn}\partial_{m}\phi_{ln} - \frac{1}{5}\partial_{m}\phi^{mn}\Phi^{-1}\partial_{n}\Phi - \frac{3}{100}\phi^{mn}(\Phi^{-1}\partial_{m}\Phi)(\Phi^{-1}\partial_{n}\Phi) 
+ \frac{1}{4}\phi^{mn}\partial_{m}g^{\mu\nu}\partial_{n}g_{\mu\nu} + \frac{1}{2}\partial_{m}\phi^{mn}g^{-1}\partial_{n}g + \frac{1}{4}\phi^{mn}(g^{-1}\partial_{m}g)(g^{-1}\partial_{n}g) 
- \frac{1}{10}\phi^{mn}(\Phi^{-1}\partial_{m}\Phi)(g^{-1}\partial_{n}g);$$
(2.12)

удобном для сравнения с SL(5) ExFT.

### 2.3 Кинетический член 3-форм

Используя редукцию Калуцы–Клейна, переопределим поля [40]

$$A_{mnk} = C_{mnk} ,$$

$$A_{\mu mn} = C_{\mu mn} - A_{\mu}{}^{k} C_{kmn} ,$$

$$A_{\mu\nu m} = C_{\mu\nu m} - 2A_{[\mu}{}^{n} C_{\nu]mn} + A_{\mu}{}^{n} A_{\nu}{}^{k} C_{mnk} ,$$

$$A_{\mu\nu\rho} = C_{\mu\nu\rho} - 3A_{[\mu}{}^{m} C_{\nu\rho]m} + 3A_{[\mu}{}^{m} A_{\nu}{}^{n} C_{\rho]mn} - A_{\mu}{}^{m} A_{\nu}{}^{n} A_{\rho}{}^{k} C_{mnk} ,$$
(2.13)

новые поля преобразуются относительно переопределенных разбитых калибровочных преобразований ( $\Lambda_{mn}, \Lambda_{\mu m}, \Lambda_{\mu \nu}$ ) следующим образом [40]

$$\begin{aligned}
\delta A_{mnk} &= 3\partial_{[m}\Lambda_{nk]}, \\
\delta A_{\mu mn} &= D_{\mu}\Lambda_{mn} - 2\partial_{[m|}\Lambda_{\mu|n]}, \\
\delta A_{\mu\nu m} &= 2D_{[\mu}\Lambda_{\nu]m} - F_{\mu\nu}{}^{n}\Lambda_{mn} + \partial_{m}\Lambda_{\mu\nu}, \\
\delta A_{\mu\nu\rho} &= 3D_{[\mu}\Lambda_{\nu\rho]} - 3F_{[\mu\nu}{}^{n}\Lambda_{\rho]n},
\end{aligned}$$
(2.14)

здесь  $D_{\mu}$ , как и ранее, ковариантная относительно внутренних диффеоморфизмов производная  $D_{\mu} = \partial_{\mu} - \mathcal{L}_{A_{\mu}^{m}}.$ 

При такой редукции кинетический член для 3-форм запишется как

$$\mathcal{L}_{3-\text{form}} = -\frac{1}{48} E F^{\hat{\mu}\hat{\nu}\hat{\rho}\hat{\sigma}} F_{\hat{\mu}\hat{\nu}\hat{\rho}\hat{\sigma}} = = -\frac{1}{48} \phi^{n\gamma+1} e \left( \phi^{-8\gamma} F^{\mu\nu\rho\sigma} F_{\mu\nu\rho\sigma} + 4\phi^{-6\gamma} \phi^{mn} F^{\mu\nu\rho}{}_{m} F_{\mu\nu\rhon} + 6\phi^{-4\gamma} \phi^{mn} \phi^{kl} F^{\mu\nu}{}_{mk} F_{\mu\nu nl} \right. + 4\phi^{-2\gamma} \phi^{mn} \phi^{kl} \phi^{pq} F^{\mu}{}_{mkp} F_{\mu nlq} + \phi^{mn} \phi^{kl} \phi^{pq} \phi^{rs} F_{mkpr} F_{nlqs} \right) = (2.15)$$
$$^{\gamma=-\frac{1}{5}:n=7} -\frac{1}{48} \phi^{-\frac{2}{5}} e \left( \phi^{\frac{8}{5}} F^{\mu\nu\rho\sigma} F_{\mu\nu\rho\sigma} + 4\phi^{\frac{6}{5}} \phi^{mn} F^{\mu\nu\rho}{}_{m} F_{\mu\nu\rhon} + 6\phi^{\frac{4}{5}} \phi^{mn} \phi^{kl} F^{\mu\nu}{}_{mk} F_{\mu\nu nl} \right. + 4\phi^{\frac{2}{5}} \phi^{mn} \phi^{kl} \phi^{pq} F^{\mu}{}_{mkp} F_{\mu nlq} + \phi^{mn} \phi^{kl} \phi^{pq} \phi^{rs} F_{mkpr} F_{nlqs} \right)$$

Еще раз отметим, что наш коэффициент  $-\frac{1}{48}$  отличается от коэффициента  $-\frac{1}{12}$  в [40] из-за нашего выбора коэффициентов в (2.1), что сводится к замене  $C_{\hat{\nu}\hat{\rho}\hat{\sigma}} \rightarrow \frac{1}{2}C_{\hat{\nu}\hat{\rho}\hat{\sigma}}$ . Тензоры напряженностей для переопределенных полей выражаются согласно процедуре редукции [40]

$$F_{mnkl} = 4\partial_{[m}A_{nkl]},$$

$$F_{\mu nkl} = D_{\mu}A_{nkl} - 3\partial_{[n}A_{|\mu|kl]},$$

$$F_{\mu\nu mn} = 2D_{[\mu}A_{\nu]mn} + F_{\mu\nu}{}^{k}A_{kmn} + 2\partial_{[m}A_{|\mu\nu|n]},$$

$$F_{\mu\nu\rho m} = 3D_{[\mu}A_{\nu\rho]m} + 3F_{[\mu\nu}{}^{n}A_{\rho]mn} - \partial_{m}A_{\mu\nu\rho},$$

$$F_{\mu\nu\rho\sigma} = 4D_{[\mu}A_{\nu\rho\sigma]} + 6F_{[\mu\nu}{}^{m}A_{\rho\sigma]m},$$
(2.16)

и являются ковариантными относительно разбитых калибровочных преобразований  $(\Lambda_{mn}, \Lambda_{\mu m}, \Lambda_{\mu \nu})$  [40].

#### 2.4 Построение вложения

В разбитом действии супергравитации члены, содержащие 2-формы  $F_{\mu\nu}{}^m$  в части (2.8) и  $F_{\mu\nu mn}$  в (2.15), могут быть скомбинированы следующим образом

$$e^{-1}\mathcal{L}_{kin-2} = -\frac{1}{4}\Phi^{\frac{1}{5}}F^{\mu\nu m}F_{\mu\nu}{}^{n}\phi_{mn} - \frac{1}{8}\Phi^{\frac{1}{5}}\phi^{mn}\phi^{kl}F^{\mu\nu}{}_{mk}F_{\mu\nu nl}$$

$$= \mp \frac{1}{8}m_{MN}m_{KL}\mathcal{F}_{\mu\nu}{}^{MK}\mathcal{F}^{\mu\nu NL},$$
(2.17)

где верхний знак отвечает случаю, когда внешнее d = 7 пространство лоренцевой сигнатуры, а нижний знак — евклидовой сигнатуре (мы подразумеваем что общая сигнатура 11-ти мерного пространства лоренцева), индексы M, N... = 1, ..., 5 (Приложение А), и мы определили обобщенную метрику следующим образом

$$m_{MN} = \phi^{\frac{1}{5}} \begin{bmatrix} \phi^{-1}\phi_{mn} & -V_m \\ & & \\ -V_n & \pm \phi(1\pm V_k V^k) \end{bmatrix}, \qquad m^{MN} = \phi^{-\frac{1}{5}} \begin{bmatrix} \phi(\phi^{mn} \pm V^m V^n) & \pm V^m \\ & & \\ \pm V^n & \pm \phi^{-1} \end{bmatrix}, \quad (2.18)$$

где  $V^m = 1/3! \, \varepsilon^{mnkl} C_{nkl}.$ 

Ковариантные напряженности  $\mathcal{F}_{\mu
u}{}^{MN}$  определены как

$$\mathcal{F}_{\mu\nu}{}^{MN} = \begin{cases} \mathcal{F}_{\mu\nu}{}^{5m} = F_{\mu\nu}{}^{m} \\ \mathcal{F}_{\mu\nu}{}^{mn} = -\frac{1}{2} \epsilon^{mnkl} F_{\mu\nu kl} + 2h^{\frac{1}{2}} V^{[m} F_{\mu\nu}{}^{n]}. \end{cases}$$
(2.19)

Последняя строчка может быть переписана в более удобной форме  $\mathcal{F}_{\mu\nu}{}^{mn} = -\frac{1}{2} \epsilon^{mnkl} (F_{\mu\nu kl} - C_{klp} F_{\mu\nu}{}^{p}).$ 

Наконец, мы можем привести полное действие D = 11 супергравитации при редукции 7 + 4 и соответствующем фиксации калибровки локальной группы Лоренца

$$S_{11} = \int d^{7}x \, d^{4}y \, e \left[ \hat{R} \mp \frac{1}{8} m_{MN} m_{KL} \mathcal{F}_{\mu\nu}{}^{MK} \mathcal{F}^{\mu\nu NL} - \frac{1}{48} \phi^{\frac{6}{5}} F^{\mu\nu\rho\sigma} F_{\mu\nu\rho\sigma} - \frac{1}{12} \phi^{\frac{4}{5}} \phi^{mn} F^{\mu\nu\rho}{}_{m} F_{\mu\nu\rhon} - \frac{1}{2} \phi^{mn} D^{\mu} \phi_{m}{}^{\overline{m}} D_{\mu} \phi_{n\overline{m}} - \frac{1}{5} \phi^{-2} D^{\mu} \phi \, D_{\mu} \phi - \frac{1}{2} (\phi^{m\overline{m}} D^{\mu} \phi_{m}{}^{\overline{n}}) (\phi_{\overline{n}}{}^{n} D_{\mu} \phi_{n\overline{m}}) - \frac{1}{12} \phi^{mn} \phi^{kl} \phi^{pq} F^{\mu}{}_{mkp} F_{\mu nlq} + e^{-1} V_{EH}(\phi, e) - \frac{1}{48} \phi^{-\frac{2}{5}} F_{mnkl} F^{mnkl} + e^{-1} \mathcal{L}_{top} \right].$$

$$(2.20)$$

Нас интересует вложение 7 + 4 супергравитации в SL(5) ExFT. Для его построения нам необходим лагранжиан SL(5) ExFT (1.31), который мы приведем здесь еще раз [42]

$$e^{-1}\mathcal{L} = \hat{\mathcal{R}}[g_{(7)}] \mp \frac{1}{8} m_{MN} m_{KL} \mathcal{F}_{\mu\nu}{}^{MK} \mathcal{F}^{\mu\nu NL} + \frac{1}{4} g^{\mu\nu} \mathcal{D}_{\mu} m_{MN} \mathcal{D}_{\nu} m^{MN} + e^{-1} \mathcal{L}_{sc} + \frac{1}{3 \cdot (16)^2} m^{MN} \mathcal{F}_{\mu\nu\rho M} \mathcal{F}^{\mu\nu\rho}{}_N + e^{-1} \mathcal{L}_{top}.$$
(2.21)

Выбирая для (2.21) выражения (2.18), (2.19) в качестве параметризации  $m_{MN}$  и  $\mathcal{F}_{\mu\nu}{}^{MN}$ , мы можем проверить, что обобщенные диффеоморфизмы (1.28), (1.29), (1.30) с параметрами ( $\Lambda^{5m}, \Lambda^{mn}$ ) для  $e^{\overline{\mu}}_{\mu}, m_{MN}$  и  $\mathcal{F}_{\mu\nu}{}^{MN}$  с выбором  $\partial_{mn} \bullet = 0$  в качестве решения уравнения проекции (1.24) сводятся к преобразованиям полей ( $e^{\overline{\mu}}_{\mu}, \phi_{mn}, C_{mnk}, A_{\mu}{}^{m}, A_{\mu kl}$ ) совпадающих с описанными выше внутренними диффеоморфизмами (2.6) и калибровочными преобразованиями (2.14) в супергравитации. В процессе проверки мы используем следующие обозначения

$$\Lambda^{mn} = \mp \frac{1}{2} \epsilon^{mnkl} \Lambda_{kl},$$
  

$$\Lambda_{mn} = + \frac{1}{2} \epsilon_{mnkl} \Lambda^{kl}.$$
(2.22)

Здесь знаки в 1-ой и 2-ой строке отличаются в согласии с

$$\varepsilon^{i_1\dots i_q j_1\dots j_{(n-q)}} \varepsilon_{i_1\dots i_q k_1\dots k_{(n-q)}} = sgn[\phi_{mn}]q!(n-q)!\delta^{[j_1}_{k_1}\dots \delta^{j_{n-q}]}_{k_{n-q}}.$$
(2.23)

Заметим, что  $\epsilon^{mnkl} = \phi \ \varepsilon^{mnkl}$  и  $\epsilon_{1234} = +1, \ \epsilon^{1234} = -1$ . Также мы пользуемся выражениями

$$\mathcal{F}_{\mu\nu}{}^{mn} = \mp \frac{1}{2} \epsilon^{mnkl} \mathcal{F}_{\mu\nu kl},$$
  

$$\mathcal{F}_{\mu\nu mn} = + \frac{1}{2} \epsilon_{mnkl} \mathcal{F}_{\mu\nu}{}^{kl},$$
  

$$A_{\mu}{}^{mn} = \mp \frac{1}{2} \epsilon^{mnkl} A_{\mu mn},$$
  
(2.24)

Далее, подставляя выбранную параметризацию полей ExFT в лагранжиан (2.21), мы можем найти соответствие между частями лагранжиана (2.21) ExFT и лагранжиана (2.20) 7 + 4 супергравитации. Таким образом мы приходим к соответствию между полями параметризующими SL(5) ExFT и полями 7 + 4 супергравитации (Таблица.4) и соответствию между частями лагранжианов ExFT и 7 + 4 супергравитации (Таблица.5).

Таблица 4: Соответствие между полями параметризующими SL(5) ExFT и полями 7 + 4 супергравитации (последняя строка выделена бордовым, так как явное построение соответствия этих частей остается открытым вопросом).

| SL(5) ExFT                                                                 | 7+4 супергравитация                  |
|----------------------------------------------------------------------------|--------------------------------------|
| $e^{\overline{\mu}}_{\mu},g_{\mu u}$                                       | $e^{\overline{\mu}}_{\mu},g_{\mu u}$ |
| $\phi_{mn}$                                                                | $\phi_{mn}$                          |
| $C_{mnk}$                                                                  | $C_{mnk}$                            |
| $\pm A_{\mu nk}$                                                           | $A_{\mu nk}$                         |
| $\mathcal{F}_{\mu u}{}^{MN}$                                               | $\mathcal{F}_{\mu u}{}^{MN}$         |
| $4\partial_{[m}C_{nkp]}$                                                   | $F_{mnkp}$                           |
| $\mathcal{D}_{\mu}C_{mnk} = D_{\mu}C_{mnk} \mp 3\partial_{[m }A_{\mu nk]}$ | $F_{\mumnk}$                         |
| $\mathcal{F}_{\mu u ho M}$                                                 | $F_{\mu u ho\sigma},F_{\mu u hon}$   |

Таблица 5: Соответствие между частями лагранжианов SL(5) ExFT и 7+4 супергравитации (последние две строки выделены бордовым, так как построение соответствия этих частей остается открытым вопросом).

| SL(5) ExFT                                                                           | 7+4 супергравитация                                                                                                                                                                       |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $e\hat{\mathcal{R}}[g_{(7)}]$                                                        | $e\widehat{R}$                                                                                                                                                                            |
| $\mp \frac{e}{8} m_{MN} m_{KL} \mathcal{F}_{\mu\nu}{}^{MK} \mathcal{F}^{\mu\nu NL}$  | $\mp \frac{e}{8} m_{MN} m_{KL} \mathcal{F}_{\mu u}{}^{MK} \mathcal{F}^{\mu u NL}$                                                                                                         |
| $rac{e}{4}g^{\mu u}{\cal D}_{\mu}m_{MN}{\cal D}_{ u}m^{MN}$                         | $-\frac{e}{2}\phi^{mn}D^{\mu}\phi_{m}^{\overline{m}}D_{\mu}\phi_{n\overline{m}}-\frac{e}{5}\phi^{-2}D^{\mu}\phi D_{\mu}\phi$                                                              |
| 40 1                                                                                 | $-\frac{e}{2}(\phi^{m\overline{m}}D^{\mu}\phi_{m}^{\overline{n}})(\phi_{\overline{n}}^{n}D_{\mu}\phi_{n\overline{m}}) - \frac{e}{12}\phi^{mn}\phi^{kl}\phi^{pq}F^{\mu}{}_{mkp}F_{\munlq}$ |
| $\mathcal{L}_{sc}$                                                                   | $V_{EH}(\phi, e) - \frac{e}{48}\phi^{-\frac{2}{5}}F_{mnkl}F^{mnkl}$                                                                                                                       |
| $\mathcal{L}_{top}$                                                                  | $\mathcal{L}_{top}$                                                                                                                                                                       |
| $\frac{e}{3\cdot(16)^2}m^{MN}\mathcal{F}_{\mu\nu\rho M}\mathcal{F}^{\mu\nu\rho}{}_N$ | $-\frac{e}{48}\phi^{\frac{6}{5}}F^{\mu\nu\rho\sigma}F_{\mu\nu\rho\sigma}-\frac{e}{12}\phi^{\frac{4}{5}}\phi^{mn}F^{\mu\nu\rho}{}_{m}F_{\mu\nu\rhon}$                                      |

Заметим, что в вычислениях мы также использовали связь между обобщенной ковариантной производной и производной ковариантной относительно внутренних диффеоморфизмов обычной супергравитации

$$\mathcal{D}_{\mu} = \partial_{\mu} - \mathcal{L}_{A_{\mu}\mathcal{M}} = \underbrace{\partial_{\mu} - \mathcal{L}_{A_{\mu}^{5m}}}_{D_{\mu}} - \mathcal{L}_{A_{\mu}^{mn}}.$$
(2.25)

# 3 Уравнения движения для редукции SL(5) ExFT

#### 3.1 Редукция SL(5) ExFT

Общая процедура построения деформированного фона супергравитации в ExFT/DFT формализме основана на переходе между геометрическим и негеометрическим фреймом, параметризующим одну и ту же обобщенную метрику, и интерпретации негеометрического три/двавектора в качестве параметра деформации, а не фундаментального поля [20, 54]. В таком подходе тензор деформации может быть составлен только из векторов Киллинга "внутренней" части фона, в терминах ExFT.

Для простоты, далее мы будем рассматривать только такие решения, метрика которых имеет блочно-диагональный вид, то есть  $M_{11} = M_4 \times M_7$ , где внутренняя метрика  $h_{mn}$  не зависит от внешних координат  $y^{\mu}$ . Это позволяет существенно упростить уравнения движения путем редукции теории в чисто скалярную обобщенную геометрию SL(5), аналогично [32, 43], с сохранением геометрии внешнего пространства. Таким образом мы редуцируем уравнения движения полной SL(5) ExFT на случай

$$g_{\mu\nu} = g_{\mu\nu}(y^{\mu}, x^{m}), \quad m_{MN} = m_{MN}(x^{m}), A_{\mu}^{MN} = 0, \qquad B_{\mu\nu\,m} = 0.$$
(3.1)

Более того, обладая структурой полей теории (3.1), мы можем использовать ее уже на уровне лагранжиана, после чего в лагранжиане ExFT остается только член d = 7 Эйнштейна-Гильберта и скалярный потенциал обобщенной метрики

$$e^{-1}\mathcal{L} = \mathcal{R}[g_{(7)}] - \left(\frac{1}{8}\partial_{MN}m_{PQ}\partial_{KL}m^{PQ}m^{MK}m^{NL} + \frac{1}{2}m^{MK}\partial_{MN}m^{NL}(g^{\mu\nu}\partial_{KL}g_{\mu\nu}) + \frac{1}{2}\partial_{MN}m^{LN}\partial_{KL}m^{MK} + \frac{1}{2}\partial_{MN}m_{PQ}\partial_{KL}m^{MP}m^{NK}m^{LQ} + \frac{1}{8}m^{MK}m^{NL}(g^{\mu\nu}\partial_{MN}g_{\mu\nu})(g^{\rho\sigma}\partial_{KL}g_{\rho\sigma}) + \frac{1}{8}m^{MK}m^{NL}\partial_{MN}g^{\mu\nu}\partial_{KL}g_{\mu\nu}\right),$$

$$(3.2)$$

где  $\mathcal{R}[g_{(7)}]$  скаляр Риччи для метрики  $g_{\mu\nu}$ . Важно отметить, что такая редукция, зависящая от фона, основана на сферическом анзаце (3.1), и не обеспечивает полной согласованной редукции теории. Тем не менее, любое решение вида (3.1) ExFT, соттветствует решению d = 11супергравитации, и после три-векторной деформации оно сохраняет вид (3.1) (но уже с новой обобщенной и внешней метрикой), так как три-векторные деформации составленные из векторов Киллинга обобщенной метрки не зависят от внешних координат  $y^{\mu}$ . Заметим, что мы произвели редукцию на уровне лагранжиана, но структура членов взаимодействий (3.1) такова, что это эквивалентно редукции на уровне уравнений движения.

Далее мы будем рассматривать случай, когда деформация приводит к перешкалированию 7– мерной части метрики на скалярный множитель, зависящий от внутренних координат  $x^m$ . Для d = 7 метрики до деформации мы будем использовать анзац  $g_{\mu\nu}(y^{\mu}, x^m) = e^{-2\phi(x^m)}h^{\frac{1}{5}}\bar{g}_{\mu\nu}(y^{\mu})$ , что позволяет избавиться от зависимости от  $x^m$  в  $\phi(x^m)$  путем правильного перешкалирования обобщенной метрики (выше  $h = \det(h_{mn})$ ). Для того, чтобы добиться этого, определим перешкалированные поля следующим образом

$$g_{\mu\nu} = e^{-2\phi} h^{\frac{1}{5}} \bar{g}_{\mu\nu},$$

$$m_{MN} = e^{-\phi} h^{\frac{1}{10}} M_{MN}.$$
(3.3)

Это позволяет переписать лагранжиан  $\mathcal{L} = e \hat{\mathcal{R}}[g_{(7)}] + \mathcal{L}_{sc}$  в виде

$$\mathcal{L} = \bar{e} M^{-1} \left( \mathcal{R}[\bar{g}_{(7)}] - \frac{1}{8} M^{KL} M^{MN} \partial_{KM} M_{PQ} \partial_{LN} M^{PQ} - \frac{1}{2} \partial_{NK} M^{MN} \partial_{ML} M^{KL} \right. \\ \left. + \frac{1}{2} M^{KL} M^{MN} \partial_{MK} M^{PQ} \partial_{PL} M_{NQ} + M^{KL} M^{MN} \partial_{KP} M_{MN} \partial_{LQ} M^{PQ} \right. \\ \left. - \frac{15}{24} M^{KL} M^{MN} M^{PQ} M^{RS} \partial_{MP} M_{KL} \partial_{NQ} M_{RS} \right),$$

$$(3.4)$$

где  $M = \det M_{MN} = e^{5\phi} h^{-1/2}$  и  $\bar{e} = (\det \bar{g}_{\mu\nu})^{1/2}$ . Для перешкалирования (3.3) репер в d = 11имеет следующий вид (сравните с (2.3))

$$E_{\hat{\mu}}^{\hat{\alpha}} = \begin{pmatrix} e^{-\phi} \bar{e}_{\mu}^{\overline{\mu}} & A_{\mu}^{m} h_{m}^{\overline{m}} \\ 0 & h_{m}^{\overline{m}} \end{pmatrix}, \qquad (3.5)$$

а обобщенная метрика (сравните с (2.18))

$$M_{MN} = e^{\phi} \begin{bmatrix} |h|^{-\frac{1}{2}}h_{mn} & -V_n \\ & & \\ -V_m & \pm |h|^{\frac{1}{2}}(1\pm V_k V^k) \end{bmatrix}, \quad M^{MN} = e^{-\phi} \begin{bmatrix} |h|^{\frac{1}{2}}(h^{mn}\pm V^m V^n) & \pm V_n \\ & & \\ \pm V_m & \pm |h|^{-\frac{1}{2}} \end{bmatrix}$$
(3.6)

где  $V^m = \frac{1}{3!} \varepsilon^{mnkl} C_{nkl}$  и  $h = \det h_{mn}$ . Подставляя все это в (3.4) мы получаем лагранжиан

$$\bar{e}^{-1}h^{-\frac{1}{2}}\mathcal{L} = e^{-5\phi}\mathcal{R}[\bar{g}_{(7)}] + e^{-7\phi}\left(\mathcal{R}[h_{(4)}] + 42h^{mn}\partial_m\phi\partial_n\phi \mp \frac{1}{2}\nabla_m V^m\nabla_n V^n\right).$$
(3.7)

Заметим, что в случае  $\mathcal{R}[\bar{g}_{(7)}] = 0$ , ковариантный лагранжиан (3.4) воспроизводит  $SL(5) \times \mathbb{R}^+$  лагранжиан из [43] с точностью до полных производных.

#### 3.2 Обобщенная деформация Янга–Бакстера

Перешкалированная метрика  $M_{MN}$  (3.6) может быть записана при помощи обобщенного репера,  $M_{MN} = \mathcal{E}_M{}^A \eta_{AB} \mathcal{E}_N{}^B$ , с использованием

$$\mathcal{E}_{M}{}^{A} = e^{\frac{\phi}{2}} \begin{bmatrix} |g|^{-1/4} g_{m}{}^{a} & |g|^{1/4} v^{a} \\ & & \\ 0 & |g|^{1/4} \end{bmatrix}, \quad \eta_{AB} = \begin{bmatrix} \eta_{ab} & 0 \\ & \\ 0 & 1 \end{bmatrix}, \quad (3.8)$$

где  $g_m{}^a$  репер метрики  $g_{mn}$  и  $g = \det g_{mn}$ .

Представление через реперы оказывается наиболее удбным для определения деформации путем обобщения *β*–сдвига в DFT, который мы назовем *Ω*–сдвиг:

$$\mathcal{E}_M{}^A \longrightarrow O[\Omega]_M{}^N \mathcal{E}_N{}^B, \tag{3.9}$$

с матрицей  $O[\Omega]$ 

$$O[\Omega] = \begin{bmatrix} \delta_m^n & 0\\ \\ \\ \frac{1}{3!} \epsilon_{mpqr} \Omega^{pqr} & 1 \end{bmatrix}, \qquad (3.10)$$

где  $\epsilon_{mnkl}$  эпсилон символ и  $\Omega^{mnk}$  тензорные компоненты три-вектора деформации  $\Omega = \frac{1}{3!} \rho^{\alpha\beta\gamma} k_{\alpha} \wedge k_{\beta} \wedge k_{\gamma}$ . Таким образом определенная деформация является независимой от фрейма и позволяет определить деформацию для решений с флаксами.

Рассмотрим изначальное решение состоящее из внутренней метрики  $g_{mn}$ , калибровочной 3формы записанной через  $v^m = \frac{1}{3!} \varepsilon^{mnkl} c_{nkl}$  и 7 × 7 блок 11-мерной метрики  $g_{\mu\nu} = e^{-2\phi(x)} \bar{g}_{\mu\nu}(y)$ . Деформация (3.9) поворачивает обобщенный репер на  $O[\Omega]$ . Обобщенная метрика становится зависимой от  $\Omega$ ; тем не менее, мы можем переписать новую метрику используя выражение (3.6), но с новыми, деформированными полями  $G_{mn}$ ,  $V^m$  и  $G_{\mu\nu} = e^{-2\Phi(x)} \bar{g}_{\mu\nu}(y)$  (напомним, что мы ограничились деформациями, которые изменяют внешнюю метрику на фактор зависящий от  $x^m$ ). Явно это может быть записано как

$$M_{MN} = e^{\phi} \begin{bmatrix} |g|^{-1/2} (g_{mn} \pm (1 \pm v^2) W_m W_n - 2v_{(m} W_n)) & -v_n \pm (1 \pm v^2) W_n \\ -v_m \pm (1 \pm v^2) W_m & \pm |g|^{1/2} (1 \pm v^2) \end{bmatrix}$$

$$= e^{\phi} \begin{bmatrix} |G|^{-1/2} G_{mn} & -V_m \\ -V_n & \pm |G|^{1/2} (1 \pm V^2) \end{bmatrix},$$
(3.11)

где  $W_m = \frac{1}{3!} \varepsilon_{mnkl} \Omega^{nkl}$ . Первая матрица сверху — это результат умножения (3.9), в то время как вторая матрица составлена из деформированных полей. Равенство этих двух записей для одной обобщенной метрики определяет деформацию в терминах полей d = 11 супергравитации  $(g_{mn}, g_{\mu\nu}, c_{mnk}) \longrightarrow (G_{mn}, G_{\mu\nu}, C_{mnk})$ . Так как основное преобразование (3.9) по существу является сменой фрейма, то удобно называть два приведенных выше представления обобщенной метрики как C-фрейм и  $(C - \Omega)$ -фрейм соответственно, в зависимости от того, какие поля появляются в обобщенной метрике.

Для построения явных соотношений между d = 11 полями, мы следуем процедуре, описанной в [54] и начинаем с приравнивания детерминантов обобщенной метрики в двух фреймах (3.11) и получаем

$$e^{5\Phi}|G|^{-\frac{1}{2}} = e^{5\phi}|g|^{-\frac{1}{2}},$$
(3.12)

где  $G = \det G_{mn}$ . Далее, приравнивая обобщенные метрики поблочно

$$e^{\Phi}|G|^{-\frac{1}{2}}G_{mn} = e^{\phi}|g|^{-\frac{1}{2}}\left(g_{mn} \pm (1 \pm v^2)W_mW_n - 2v_{(m}W_n)\right), \qquad (3.13a)$$

$$e^{\Phi}V_m = e^{\phi} \Big( v_m \pm (1 \pm v^2) W_m \Big).$$
 (3.13b)

Используя детерминант первой строки и алгебраическое тождество

$$\det\left(\delta_m{}^n \pm (1\pm v^2)W_mW^n - v_mW^n - W_mv^n\right) = 1\pm W_mW^m - 2W_mv^m + \left(W_mv^m\right)^2, \qquad (3.14)$$

мы можем определить

$$K^{-1} = e^{-6(\Phi - \phi)} = 1 \pm W_m W^m - 2W_m v^m + (W_m v^m)^2.$$
(3.15)

Это равенство определяет правило преобразования  $e^{\Phi} = K^{\frac{1}{6}} e^{\phi}$  для поля  $\phi$  и таким образом для внешней метрики. Если рассматривать K как функцию параметра деформации  $W_m$ , уравнения (3.13) выражают деформированные поля в терминах изначальной метрики  $g_{mn}$ , калибровочного

поля  $v^m$  и тензора деформации  $W_m$ . Все вместе, правила построения деформации могут быть записаны в следующем виде:

$$G_{\mu\nu} = K^{-\frac{1}{3}}g_{\mu\nu}, \qquad (e^{\Phi} = K^{\frac{1}{6}}e^{\phi}),$$

$$G_{mn} = K^{\frac{2}{3}}\left(g_{mn} \pm (1 \pm v^2)W_mW_n - 2v_{(m}W_{n)}\right),$$

$$C^{mnk} = K^{-1}\left(c^{mnk} + (1 \pm \frac{1}{3!}c^2)\Omega^{mnk}\right),$$
(3.16)

мы будем называть деформацию, построенную таким образом, обобщенной деформацией Янга–Бакстера.

Описанная выше процедура построения деформации схематически изображена на Рисунке 5.



Рис. 5: Связь фона  $(g_{\mu\nu}, g_{mn}, c_{mnk})$ , решающего уравнения 11D супергравитации, и его деформации  $(G_{\mu\nu}, G_{mn}, C_{mnk})$ . С-фрейм - 11D супергравитация, С-Ω-фрейм - ExFT. Обобщенная деформация Янга-Бакстера действует на решение супергравитации, и в данном случае интерпретируется, как композиция деформации с параметром  $\Omega^{mnk}$  и открыто/замкнутого отображения. Требования выполнений уравнений супергравитации для деформированного фона накладывает условия на  $\Omega^{mnk}$ .

Заметим, что индексы  $C_{mnk}$  поднимаются деформированной метрикой  $G_{mn}$ , в то время, как индексы  $c_{mnk}$  поднимаются изначальной метрикой  $g_{mn}$ . Также стоит напомнить, что внешний  $G_{\mu\nu}$  и внутренний  $G_{mn}$  блоки полной d = 11 определены следующим интервалом

$$ds^{2} = G_{\mu\nu}(y, x)dy^{\mu}dy^{\nu} + G_{mn}(x)dx^{m}dx^{n}, \qquad (3.17)$$

внешняя метрика имеет вид  $G_{\mu\nu}(y,x) = e^{-2\Phi(x)} \bar{g}_{\mu\nu}(y)$  для изначальной  $\bar{g}_{\mu\nu}$  которая не зависит от внутренних координат.

Правила построения деформации (3.16) являются обобщением подхода, описанного в [54, 43], и также воспроизводит полученные ранее результаты в [56, 57]. В контексте последних (3.16) может рассматриваться, как переопределение полей при переходе из открытого в закрытый фрейм для мембран в М-теории.

#### 3.3 Уравнения движения

Рассмотрим теперь динамические уравнения на тензор деформации  $W_m$ , получающиеся из требования того, что изначальный и деформированный фоны являются решениями уравнений движения полной d = 11 супергравитации, или, что то же самое, решениями редуцированной теории.

По техническим причинам мы рассмотрим уравнения, определяющие деформации решения  $AdS_4 \times S^7$ , в *C*-фрейме, то есть используя второй вид метрики (3.11). Поэтому, уравнения на тензор деформации  $W_m$  будут неявными в таком случае. Мы берем лагранжиан редуцированной SL(5) ExFT в *C*-фрейме (3.7)

$$\bar{e}^{-1}h^{-\frac{1}{2}}\mathcal{L} = e^{-5\phi}\mathcal{R}[\bar{g}_{(7)}] + e^{-7\phi}\left(\mathcal{R}[h_{(4)}] + 42h^{mn}\partial_m\phi\partial_n\phi + \frac{1}{2}\nabla_mV^m\nabla_nV^n\right),\tag{3.18}$$

где знак выбран в соответствии с сигнатурой  $AdS_4 \times \mathbb{S}^7$ .

Из него получаем уравнения движения на динамические поля  $\phi, h_{mn}$  и  $V_m$ 

$$\begin{aligned} \delta\phi : & \frac{5}{7}e^{2\phi} \mathcal{R}[\bar{g}_{(7)}] + \mathcal{R}[h_{(4)}] + 12 \nabla_m \nabla_n \phi \ h^{mn} - 42 \nabla_m \phi \nabla_n \phi \ h^{mn} + \frac{1}{2} (\nabla V)^2 = 0, \\ \delta V^m : & \partial_m (\nabla V) - 7 (\nabla V) \partial_m \phi = 0, \\ \delta h^{mn} : & \mathcal{R}_{mn}[h_{(4)}] - 7 \partial_m \phi \ \partial_n \phi \ + 7 \nabla_m \nabla_n \phi \\ & + h_{mn} \left( -\frac{1}{2}e^{2\phi} \mathcal{R}[\bar{g}_{(7)}] - \frac{1}{2} \mathcal{R}[h_{(4)}] + 28 \ \partial_k \phi \ \partial_l \phi \ h^{kl} - 7 \nabla_k \nabla_l \phi \ h^{kl} + \frac{1}{4} (\nabla V)^2 \right) = 0, \end{aligned}$$
(3.19)

Такой подход оказывается намного более простым для дальнейших вычислений, чем работа с обычными уравнениями 11-ти мерной супергравитации. Внешнее пространство зафиксировано и является 7-сферой с метрикой  $\bar{g}_{\mu\nu}$  с точностью до фактора  $e^{-2\phi}$ . Любое решение супергравитации вида (3.1), до или после деформации, должно решать эти уравнения.

Для вывода явных уравнений на тензор деформации для решения  $\operatorname{AdS}_4 \times \mathbb{S}^7$ , необходимо работать в смешанном  $(C - \Omega)$ -фрейме, используя обобщенную метрику в виде (3.11) в лагранжиане (3.4). Это дает описание 11-ти мерной супергравитации одновременно в терминах  $C_{mnk}$  и  $\Omega^{mnk}$ , хотя  $\Omega^{mnk}$  является нединамическим и параметризует деформации. Так как вид обобщенной метрики (3.11) является громоздким и сложным, получение явных уравнений на деформацию таким способом оказывается технически сложным и поэтому будет оставлено за рамками этой работы. Явное построение такой формулировки для DFT и ExFT является открытым вопросом.

# 4 Три–векторные деформации фона $AdS_4 \times \mathbb{S}^7$

В качестве приложения формализма, развитого выше, рассмотрим деформации пространства  $AdS_4 \times S^7$ , являющегося решением 11-ти мерной супергравитации. Мы будем изучать деформации соответствующие  $\Omega \sim P \wedge P \wedge M$  и  $D \wedge P \wedge P$ . Поля изначального 11-ти мерного решения могут быть переписаны:

$$ds^{2} = \frac{1}{4}ds^{2}(AdS_{4}) + R^{2}d\Omega_{(7)}^{2}, \quad F_{4} = \frac{3}{8R}vol_{AdS_{4}}, \quad (4.1)$$

с единичной метрикой на 7-ми мерной сфере. Мы рассматриваем  $AdS_4$  в качестве "внутреннего" пространства SL(5) ExFT. Обозначая координаты  $AdS_4$  как  $x^m = (x^0, x^1, x^2, z)$ , можно записать метрику в привычном виде:

$$ds^{2}(\mathrm{AdS}_{4}) = \frac{R^{2}}{z^{2}} \left[ -(dx^{0})^{2} + (dx^{1})^{2} + (dx^{2})^{2} + (dz)^{2} \right].$$
(4.2)

Тогда единственная ненулевая компонента флакса и соответствующая 3-форма калибровочного потенциала запишутся:

$$F_{012z} = -\frac{3R^3}{8z^4}, \quad c_{012} = -\frac{R^3}{8z^3}.$$
(4.3)

Нас интересуют обобщенные янг-бакстеровские три-векторные деформации:

$$\Omega = \frac{1}{3!} \rho^{\alpha\beta\gamma} k_{\alpha} \wedge k_{\beta} \wedge k_{\gamma}, \qquad (4.4)$$

где  $k_{\alpha}$  вектора Киллинга изначального решения, в нашем случае  $AdS_4 \times \mathbb{S}^7$ . Как было показано в пункте 3.2, матрица деформации  $O[\Omega]$  не зависит от выбора фрейма, что говорит о том, что мы можем использовать вектора Киллинга  $AdS_4$  в C-фрейме<sup>1</sup>. Поэтому, мы будем использовать вектора Киллинга  $AdS_4$  в C-фрейме<sup>1</sup>. Поэтому, мы будем использовать вектора Киллинга  $AdS_4$  в C-фрейме<sup>1</sup>.

$$P_{a} = \partial_{a}, \qquad K_{a} = x^{2}\partial_{a} + 2x_{a}D, D = -x^{m}\partial_{m}, \qquad M_{ab} = x_{a}\partial_{b} - x_{b}\partial_{a},$$
(4.5)

где a, b = 0, 1, 2 и m, n = 0, 1, 2, z, и мы воспользовались определением  $x^2 = \eta_{mn} x^m x^n$  и  $x_a = \eta_{ab} x^b$  (подробне об обозначениях смотри в Приложении.А).

Для систематического построения явных примеров деформаций  $\operatorname{AdS}_4 \times \mathbb{S}^7$ , мы рассматриваем такие комбинации векторов Киллинга, что в результате  $\Omega$  имеет полиномиальное выражение степени 0, 1, и так далее, по координатам  $\operatorname{AdS}_4$ . Применяя правило преобразования (3.16), мы получаем деформированные метрики  $G_{\mu\nu}, G_{mn}$  и 3-формы  $C_{mnk}$  из изначальных недеформированных полей  $g_{mn}, g_{\mu\nu}, c_{mnk}$  и тензора деформации  $W_m$ , определяемого выбранным видом  $\Omega^{mnk}$ . Для проверки того, что получившийся в результате деформации фон является решением 11-ти мерной супергравитации, мы подставляем этот деформированный фон, переписанный в терминах полей  $\Phi, G_{mn}, V^m$ , в уравнения движения (3.19) редуцированной ExFT. Так как деформация действует на  $\mathbb{S}^7$  только изменением префактора  $e^{-2\phi}$ , использование редуцированных уравнений оказывается технически намного более простым, чем проверка уравнений d = 11 теории.

<sup>&</sup>lt;sup>1</sup>Для того, чтобы убедиться в этом, можно воспользоваться подходом, основанным на обобщенных векторах Киллинга изначального недеформированного решения в духе [58].

#### 4.1 $P \land P \land P$

Начнем с три-векторной деформации 0–ой степени по координатам, она отвечает тривиальной абелевой  $P \wedge P \wedge P$  деформации, определяемой как

$$\Omega = \frac{1}{3!} \rho^{\alpha\beta\gamma} k_{\alpha} \wedge k_{\beta} \wedge k_{\gamma} = 4\eta P_0 \wedge P_1 \wedge P_2.$$
(4.6)

Тензор деформации и префактор K для нее

$$W = -\frac{\eta}{4} \frac{R^4}{z^4} dz, \quad K = \left(1 + \eta \frac{R^3}{z^3}\right)^{-1}.$$
(4.7)

Следуя описанной выше процедуре, мы находим деформированный фон

$$ds^{2} = \frac{R^{2}}{4z^{2}} \left( 1 + \eta \frac{R^{3}}{z^{3}} \right)^{-\frac{2}{3}} \left[ -(dx^{0})^{2} + (dx^{1})^{2} + (dx^{2})^{2} \right] + R^{2} \left( 1 + \eta \frac{R^{3}}{z^{3}} \right)^{\frac{1}{3}} \left( \frac{1}{4z^{2}} dz^{2} + d\Omega_{(7)}^{2} \right),$$

$$F = -\frac{3}{8} \frac{R^{3}}{z^{4}} \left( 1 + \eta \frac{R^{3}}{z^{3}} \right)^{-2} dx^{0} \wedge dx^{1} \wedge dx^{2} \wedge dz,$$
(4.8)

который является решением уравнений (3.19) и поэтому и уравнений d = 11 супергравитации.

Для  $P \wedge P \wedge P$  деформированного решения Q-флакс  $Q_m^{nkl} = \partial_m \Omega^{nkl}$  является бесследовым  $Q_m^{mnk} = 0$ , поэтому решение может быть согласованно редуцировано в решение 10-ти мерной теории типа IIA. Фактически,  $P \wedge P \wedge P$  абелева деформация в том смысле, что существует генератор, коммутирующий с оставшимися двумя. В данном случае в качестве такого генератора можно взять любой из  $P_a$ , например  $P_2$ . Это означает, что деформация (4.8) может рассматриваться, как следующая последовательность действий: 1) размерная редукция изначального  $AdS_4 \times S^7$  в теорию типа IIA вдоль  $x^2$ , 2) ТsT деформация с би–вектором  $\beta$ , таким образом, что  $\Omega = \partial_2 \wedge \beta$ :

$$\beta = 4\eta \,\partial_0 \wedge \partial_1,\tag{4.9}$$

3) поднятие обратно в d = 11. Как и ожидалось, это отражает тот факт, что  $P \wedge P \wedge P$  деформация просто отвечает 11-ти мерному обобщению TsT [59, 60].

#### 4.2 $P \land P \land M$

Этот пример деформации  $\Omega$  является полиномом 1-ой степени по  $x^a$  и отвечает неабелевой деформации. Используя коэффициенты со следующими симметриями  $\rho^{ab,cd} = \rho^{[ab],[cd]}$ , мы запишем  $\Omega$  в виде

$$\Omega = \frac{1}{4} \rho^{ab,cd} P_a \wedge P_b \wedge M_{cd} = \frac{4}{R^3} \rho_a x^a \,\partial_0 \wedge \partial_1 \wedge \partial_2, \tag{4.10}$$

где

$$\rho_{0} = \frac{R^{3}}{4} (\rho^{02,01} - \rho^{01,02}),$$

$$\rho_{1} = \frac{R^{3}}{4} (\rho^{01,12} - \rho^{12,01}),$$

$$\rho_{2} = \frac{R^{3}}{4} (\rho^{02,12} - \rho^{12,02}),$$
(4.11)

эти численные коэффициенты мы ввели для удобства и простоты записи. Как легко видеть, нет ни одного генератора который коммутировал бы со всеми остальными, что означает, что деформация неабелева. Тензор деформации выглядит следующим образом

$$W = -\frac{R}{4z^4} \rho_a x^a \, dz, \quad K = \frac{z^3}{z^3 - \rho_a x^a},\tag{4.12}$$

и в итоге деформированный фон записывается как

$$ds^{2} = \frac{R^{2}}{4} \left( z^{3} - \rho_{a} x^{a} \right)^{-\frac{2}{3}} \left[ -(dx^{0})^{2} + (dx^{1})^{2} + (dx^{2})^{2} \right] + \frac{R^{2}}{z} \left( z^{3} - \rho_{a} x^{a} \right)^{\frac{1}{3}} \left( \frac{1}{4z^{2}} dz^{2} + d\Omega_{(7)}^{2} \right),$$

$$F = -\frac{3R}{8} \left( \frac{Rz}{z^{3} - \rho_{a} x^{a}} \right)^{2} dx^{0} \wedge dx^{1} \wedge dx^{2} \wedge dz.$$
(4.13)

Используя (3.19), мы можем убедиться, что построенная таким образом деформирмация дает снова решение 11-ти мерной супергравитации для произвольных значений констант  $\rho_a$ . В противоположность предыдущему Примеру 4.1( $P \wedge P \wedge P$ ), Q-флакс имеет ненулевой след

$$2\partial_{[m}W_{n]}dx^{m} \wedge dx^{n} = -\frac{R^{3}}{4z^{4}}\rho_{a}dx^{a} \wedge dz \neq 0.$$

$$(4.14)$$

При редукции из ExFT записанной в  $\Omega$ -фрейме в  $\beta$ -супергравитацию, ненулевой след  $Q_m^{mkl}$  будет генерировать ненулевой след Q-флакса  $\beta$ -супергравитации. Последний, как известно из [61], отвечает вектору I обобщенной супергравитации. Таким образом редуцированный фон должен быть решением не обычной, а обобщенной супергравитации.

#### 4.3 $D \wedge P \wedge P$

Другой пример три–векторной деформации первого порядка по  $x^m$  — это деформация составленная из одного генератора дилатации D и генераторов импульса. Для конформной алгебры  $AdS_4$  существует три возможных пары  $P_a, P_b$ . Запишем произвольный три-вектор  $D \wedge P \wedge P$  следующим образом

$$\Omega = \frac{2}{R^3} \rho_a \epsilon^{abc} D \wedge P_b \wedge P_c = \frac{4}{R^3} \rho_a x^a \,\partial_0 \wedge \partial_1 \wedge \partial_2 - \frac{2}{R^3} z \,\rho_a \epsilon^{abc} \,\partial_b \wedge \partial_c \wedge \partial_z, \tag{4.15}$$

где  $\rho_a$  отвечает трем независимым компонентам  $\rho$ -матрицы. Используя такую параметризацию для  $\Omega$ , мы можем выразить тензор деформации и префактор

$$W = \frac{R}{4z^3} \rho_a \left( dx^a - x^a \frac{dz}{z} \right), \quad K = \left( 1 + \frac{\rho_a x^a}{z^3} - \frac{\rho^2}{4z^4} \right)^{-1}, \tag{4.16}$$

где мы воспользовались следующим определением  $\rho^2 = \rho_a \rho_b \eta^{ab}$ . Таким образом деформированный фон имеет следующий вид

$$ds^{2} = \frac{R^{2}}{4} \left( z^{3} + \rho_{a} x^{a} - \frac{\rho^{2}}{4z} \right)^{-\frac{2}{3}} \left[ -(dx^{0})^{2} + (dx^{1})^{2} + (dx^{2})^{2} + \left(1 + \frac{\rho_{a} x^{a}}{z^{3}}\right) dz^{2} - \frac{1}{z^{2}} \rho_{a} dx^{a} dz \right] \\ + \frac{R^{2}}{z} \left( z^{3} + \rho_{a} x^{a} - \frac{\rho^{2}}{4z} \right)^{\frac{1}{3}} d\Omega_{(7)}^{2}, \\ F = -\frac{3R^{3} z^{2}}{8} \left( 1 + \frac{\rho^{2}}{12z^{4}} \right) \left( z^{3} + \rho_{a} x^{a} - \frac{\rho^{2}}{4z} \right)^{-2} dx^{0} \wedge dx^{1} \wedge dx^{2} \wedge dz.$$

$$(4.17)$$

Путем проверки (3.19) или уравнений d = 11 супергравитации мы можем убедиться в том, что такой фон является решением при условии, что параметры  $\rho_a$  образуют нулевой вектор, а именно

$$\rho^2 = -\rho_0^2 + \rho_1^2 + \rho_2^2 = 0. \tag{4.18}$$

Это уравнение напоминает деформацию Янга–Бакстера в 10–ти измерениях с параметром  $\Theta = \tau^a M_{ab} \wedge P^b$ , которая приводила к аналогичному требованию  $\tau$  — светоподобный вектор [19]. Механизм появления условия (4.18) абсолютно аналогичен тому, как появляется уравнение Янга-Бакстера в d = 10 супергравитации. После простых алгебраических преобразований фактор  $\rho^2$  выделяется общим множителем из всех уравнений движения (3.19). Можно предположить, что условие (4.18) является простым примером обобщенного уравнения Янга–Бакстера, примененного к три–вектору (4.15).

Аналогично случаю  $P \wedge P \wedge M$ , этот фон является примером деформации с нулевым R-флаксом, но с ненулевым следом Q-флакса. Выражение для последнего

$$2\partial_{[m}W_{n]}dx^{m} \wedge dx^{n} = -\frac{R}{z^{4}}\rho_{a}dx^{a} \wedge dz \neq 0.$$
(4.19)

Применяя рассуждения аналогичные Пункту 4.2, мы приходим к выводу, что фон, деформированный таким образом, не может быть редуцирован в решение обычной d = 10 супергравитации. Более того, так как три вектор  $\Omega$  неабелев, то  $P \wedge P \wedge M$  и  $D \wedge P \wedge P$  деформации не могут быть представлены в форме  $\Omega = \partial_* \wedge \beta$ . Таким образом, обе представленные деформациями являются чисто 11-ти мерными деформациями и не могут бать получены в 10-ти мерном случае.

Важным вопросом остается то, какую часть суперсимметрии сохраняют три-векторные деформации. Заметим, что лишь половина спиноров Киллинга пространства AdS инвариантна относительно производной Ли [62, 63] по отношению к сдвигам,  $\mathcal{L}_{Pi}\epsilon = 0$ . Мы ожидаем, что по этой причине  $P \wedge P \wedge P$  и  $P \wedge P \wedge M$  деформированные решения, представленные нами, будут сохранять только половину суперсимметрий. Кроме того, дилатации нарушают все спиноры Киллинга AdS<sub>4</sub>,  $\mathcal{L}_D \epsilon = \frac{1}{2}\epsilon$ , что предположительно говорит о том, что  $D \wedge P \wedge P$  деформированное решение нарушает все суперсимметрии. Сохранение суперсимметрий в случае два–векторных деформаций было объектом недавних исследований [64, 65, 66], в которых было построено вражение для спиноров Киллинга после деформации в терминах два-векторного параметра  $\Theta$ . Обощение этого подхода на три-векторные деформации остается интересной задачей для дальнейшего исследования.

#### 4.4 $D \wedge K \wedge K$

Внешний автоморфизм конформной алгебры

$$P_a \longleftrightarrow K_a, \quad D \longleftrightarrow -D$$

$$(4.20)$$

может быть реализован геометрически — путем инверсии, которая является изометрией пространства AdS

$$x^a \longrightarrow \frac{x^a}{x^2 + z^2}, \quad z \longrightarrow \frac{z}{x^2 + z^2}.$$
 (4.21)

Применяя данное отображение к  $D \wedge P \wedge P$ -деформированному фону (4.17), мы получим фон с деформацией  $\Omega \sim D \wedge K \wedge K$ . Можно предположить, что из–за геометрической симметрии, описанной выше, полученный  $D \wedge K \wedge K$ -деформированный фон также будет решением. Отметим, что в данном случае три–векторы деформаций связаны соотношением,

$$D \wedge K_a \wedge K_b = (x^2 + z^2)^2 D \wedge P_a \wedge P_b.$$
(4.22)

Однако прямая проверка показывает, что уже второе уравнение в (3.19), требующее  $\nabla_m V^m e^{-7\phi}$ = const, не выполняется для  $D \wedge K \wedge K$ -деформированного фона. Такой нетривиальный результат требует детального рассмотрения, для чего необходимо рассматривать уравнения в смешанном  $(C - \Omega)$ -фрейме.

## 4.5 Деформации 2-ого порядка по $x^a$

Следуя описанной выше процедуре, также были рассмотрены деформации 2-ого порядка по  $x^a$ , а именно  $P \wedge P \wedge K$ ,  $P \wedge M \wedge M$ ,  $P \wedge D \wedge M$ , которые не привели к решениям супергравитации.

### 5 Заключение

В данной работе мы построили вложение 7+4 супергравитации в SL(5) ExFT. Далее мы рассмотрели редукцию SL(5) ExFT для описания фонов вида  $M_4 \times M_7$  и сконструировали для нее обобщенную деформацию Янга–Бакстера. Затем, этот формализм был применен к решению 11-ти мерной супергравитации AdS<sub>4</sub> × S<sup>7</sup>, что обобщает результат [54] на случай неабелевых деформаций, и предъявили две новые неабелевы неунимодулярные три-векторные деформации  $\Omega \sim P \wedge P \wedge M$  и  $\Omega \sim D \wedge P \wedge P$  (где  $D, P_a, M_{ab}$  генераторы симметрий AdS<sub>4</sub>), приводящие к новым решениям супергравитации. Обе деформации неабелевы в том смысле, что их три-вектор не может быть записан в виде  $\Omega = \partial_* \wedge \beta$ , где  $\partial_*$  коммутирует со всеми  $\beta$ . Деформированные решения не могут быть получены путем редукции в 10 измерений, два-векторной деформации и поднятия обратно в d = 11, так как нет явного направления вдоль которого можно было бы осуществить редукцию [60].

### 6 \*Обсуждение

Описанная в работе процедура может быть использована для дальнейшего изучения неабелевых деформаций  $AdS_4 \times S^7$ , а также деформаций сферы в  $AdS_7 \times S^4$ . Отметим, что алгебра изометрий сферы может сильно ограничить деформации. Действительно, все обнаруженные деформации решений d = 10 супергравитации либо абелевы, либо так называемого жорданова типа. Последнее означает, что генераторы, выбранные для построения два-векторной деформации, принадлежат брелевской подалгебре полной алгебры изометрий. Поэтому три векторные деформации  $D \wedge P \wedge P$  и  $M \wedge P \wedge P$ , обсуждаемые в этой работе, могут быть отнесены к тривекторным деформациям обобщенного жорданова типа. Вопрос, который нас интригует: Отвечают ли такие деформации решениям некоторого обобщенного уравнения Янга-Бакстера? На основании имеющихся примеров для d = 10 и d = 11 и из анализа уравнений движения, мы ожидаем, что такие уравнения на деформации должны быть квадратичными по  $\rho^{abc}$ . Путем правильного выбора базиса в алгебре, такое уравнение в общем виде может быть записано в форме  $\rho^I \rho^J \kappa_{IJ} = 0$ , где  $\kappa_{IJ}$  некоторый инвариантный тензор и I, J мультииндексы, отвечающие выбранному базису. В приведенных нами примерах, борелевская подалгебра состоит из генераторов  $P_0, P_1, P_2$  с группой симметрии SO(1,2) и инвариантный тензор — это просто метрика Минковского  $\eta_{ab}$ . Это может служить мотивацией появления уравнения (4.18). Для SO(d+1), являющейся группой симметрий  $\mathbb{S}^d$  с евклидовой метрикой  $\delta_{IJ}$  в качестве инвариантного тензора, мы ожидаем уравнения вида  $\sum (\rho^I)^2 = 0$ , имеющие лишь тривиальные решения, что уже было описано в [54], где были найдены нетривиальные неабелевы два-векторные деформации плоского Евклидова пространства.

Одной из мотиваций построения конкретных примеров неабелевых три–векторных деформаций была проверка на них предполагаемых обобщенных уравнений Янга–Бакстера, одно из которых было описано в [54] и еще одно было построено нами (Приложение В.2) по аналогии с построением классического уравнения Янга–Бакстера (Приложение В.1). Которое, напомним, оказалось уравнением на параметр деформации в d = 10 (Введение 1.1), что было доказано в [19] при помощи формализма DFT и  $\beta$ -супергравитации. Это же условие получается из требования обнуления R-флакса. В [54] обнуление R-флакса  $R^{m,nklp} = \Omega^{mq[n}\partial_q \Omega^{klp]}$  в ExFT было предложено в качестве условия на три–векторные деформации, генерирующие новые решения. С использованием три–киллингового анзаца для  $\Omega$  (4.4), условие R = 0 переходит в

$$6\rho^{\alpha\beta[\gamma}\rho^{\delta\epsilon|\zeta|}f_{\alpha\zeta}{}^{\eta]} + \rho^{[\gamma\delta\epsilon}\rho^{\eta]\alpha\zeta}f_{\alpha\zeta}{}^{\beta} = 0.$$
(6.1)

Явная проверка показывает, что для  $P \wedge P \wedge M$  и  $D \wedge P \wedge P$  деформаций R-флакс исчезает.

Однако, как минимум для  $D \wedge P \wedge P$  этого не достаточно для того, чтобы деформированное решение было решением уравнений движения d = 11 супергравитации, следовательно требуется более сильное условие на  $\rho^{\alpha\beta\gamma}$  (4.18).

Другим кандидатом в уравнения на деформации было уравнение Френкеля-Мура-Замолодчикова, построенное нами в удобном для нас виде (В.10) в Приложении В.2. Особенностью данного уравнения является появление в нем антикоммутаторов генераторов алгебры симметрий, что затрудняет работу с ним в общем виде, в отличие от классических уравнений Янга– Бакстера. Более того, явная проверка уравнения (В.10) для  $P \wedge P \wedge M$  и  $D \wedge P \wedge P$  показала, что оно не выполняется.

Основываясь на обобщении пуассон-лиевой Т-дуальности до U-дуальности в [67, 68] было получено алгебраическое условие на  $\rho^{\alpha\beta\gamma}$  и высказано предположение, что оно является достаточным для того, чтобы деформированное решение было решением супергравитации. Представленные нами неабелевы деформации принадлежат неунимодулярному классу, что означает  $\partial_m \Omega^{mnk} \neq 0$ , поэтому соответствующие  $\rho^{\alpha\beta\gamma}$  не могут решать уравнения, предложенные в работе [67], так как последняя предполгает унимодулярность. Поэтому естественно ожидать, что алгебраические условия на три векторные компоненты  $\rho^{\alpha\beta\gamma}$ , такие как (4.18), должны учитывать неунимодулярность. Исключительная дринфельдовская алгебра, построенная в [69] включает в себя неунимодулярные члены и может привести к правильному обобщению уравнений Янга– Бакстера. Отметим, что в то время как в случае d = 10 и унимодулярные, и неунимодуряные деформации удовлетворяют одному общему классическому уравнению Янга–Бакстера, в М– теории это по всей видимости нарушается. Более того, условие обнуления R–флакса, равносильное классическому уравнению Янга–Бакстера в d = 10, оказывается лишь частью уравнений, полученных в [67].

Таким образом, поиск алгебраического уравнения на  $\rho^{\alpha\beta\gamma}$ , обобщающего классические уравнения Янга–Бакстера, является интересным направлением для дальнейшего исследования. С алгебраической точки зрения естественно ожидать, что классические уравнения Янга–Бакстера, описывающие рассеяние частиц в 1 + 1 измерениях, должны стать уравнением тетраэдра, описывающим рассеяние струн в d = 1 + 2 [70, 71]. В зависимости от соглашений, уравнения тетраэдра могут быть записаны как уравнение Замолодчикова или Френкеля–Мура. Вывод квази–классических уравнения тетраэдра в форме, не зависящей от представления, и сравнение их с уравнениями [67] является открытой проблемой.

Обнуление же R-флакса является более алгебраически очевидным. Следуя [72, 73], мы замечаем, что рассмотрение динамики М2-браны приводит к появлению параметра некоммутативности, описываемого три-вектором  $\Omega^{mnk}$ , и 3-скобки Намбу-Пуассона

$$\{x^m, x^n, x^k\} = \Omega^{mnk}.\tag{6.2}$$

Фундаментальное тождество для такой скобки записывается как

$$\{\{x^{i}, x^{j}, x^{k}\}, x^{l}, x^{m}\} - \{\{x^{i}, x^{l}, x^{m}\}, x^{j}, x^{k}\} - \{x^{i}, \{x^{j}, x^{l}, x^{m}\}, x^{k}\} - \{x^{i}, x^{j}, \{x^{k}, x^{l}, x^{m}\}\} = 0,$$
(6.3)

что совпадает с условием замкнутости исключительной дринфельдовской алгебры [69], и условием обнуления R-флакса в SL(5) ExFT. Используя  $W_m = \frac{1}{3!} \varepsilon_{mnkl} \Omega^{nkl}$ , фундаментальное тождество оказывается пропорционально  $\varepsilon^{mnkl} W_{[n} \partial_k W_{l]} = 0$ , что буквально дает  $R^{m,ijkl} \varepsilon_{ijkl} = 0$ . Из этого наблюдения и имеющихся примеров можно предположить, что все три-векторные деформации М-теории должны иметь нулевой R-флакс.

В этой работе мы обсуждали деформации решений d = 11 супергравитации. Другой интересный вопрос — рассмотреть эти деформации с голографической точки зрения. Теория, голографически дуальная М-теории на фоне  $AdS_4 \times S^7/\mathbb{Z}_2$ , это суперконформная теория ABJM [74],

некоторые из деформаций которой должны отвечать представленным нами деформациям со стороны гравитации. Абелева деформация  $P \wedge P \wedge P$ , рассмотренная нами, это три–векторный аналог деформации Малдасены-Руссо  $\operatorname{AdS}_5 \times \mathbb{S}^5$  [75]. На языке теории поля она представляется, как некоммутативная калибровочная теория, умножение в которой может быть получено из бранной интерпретации [76], или из рассмотрения дринфельдовского твиста для структуры алгебры Хопфа соответствющей тензорной алгебры, как в [77]. В общем, для любой три–векторной деформации вдоль изометрий  $\operatorname{AdS}_4$  следует ожидать, что в теории ABJM появятся некоммутативные структуры, определяемые стандартным произведением — звездой Мояла [78]. Более интересны неабелевы деформации  $D \wedge P \wedge P$  и  $M \wedge P \wedge P$ , которые могут рассматриваться, как три–векторные обобщения жордановых деформации Знга–Бакстера, как обуждалось анее. Для того чтобы понять, чему соответствуют эти деформации со стороны калибровочной теории, необходимо расширить подход, описанный в [77], на случай так называемого "исключительного дринфельдовского твиста", который определяет твист матрицы  $\rho^{abc}$  такой, что уравнения тетраэдра будут выполнены. Нам не известно о существовании таких структур и рассматривались ли они когда-либо в математической литературе.

В качестве последнего замечания отметим, что в отличие от [20], в текущей работе мы не вывели явных уравнений на тензор деформации  $\Omega^{mnk}$  из ExFT, и работали в *C*-фрейме. Явное уравнение на  $\Omega$  кажется наиболее удобным и оптимальным для поиска алгебраических условий на параметр деформации  $\rho^{\alpha\beta\gamma}$ . С целью написания такого уравнения была предпринята попытка написать теорию в  $\Omega$ -ковариантной форме (Приложение Г), аналогично тому как для d = 10 была написана  $\beta$ -супергравитация. При построении такой формы возникают технические трудности, требующие введения в развитый в Приложении Г формализм дополнительных структур, вроде негеометрического потенциала  $A^{MN}_{\mu}$ . В качестве альтернативы, для получения явных уравнений на тензор деформации  $\Omega^{mnk}$ , можно рассмотреть полную формулировку теории в смешанном ( $C - \Omega$ )-фрейме. Работа над этими проблемами ведется в настоящее время и их обсуждение мы оставим для дальнейших исследований.

### Благодарности

Автор выражает искреннюю признательность и благодарность своему научному руководителю Мусаеву Эдварду Таваккуловичу и Бахматову Илье Владимировичу.

#### Используемые обозначения и соглашения Α

В данной работе мы используем следующие обозначения и соглашения [42, 55]:

| $\hat{\mu}, \hat{\nu}, = 1 \dots 11$                                            | одиннадцатимерные, искривленные;                          |       |
|---------------------------------------------------------------------------------|-----------------------------------------------------------|-------|
| $\hat{\alpha}, \hat{\beta}, = 1 \dots 11$                                       | одиннадцатимерные, плоские;                               |       |
| $\mu, \nu, \rho, \ldots = 1 \dots 7$                                            | семь внешних направлений, искривленных;                   |       |
| $\overline{\mu}, \overline{\nu}, \overline{\rho}, \ldots = 1 \dots 7$           | семь внешних направлений, плоских;                        |       |
| $m, n, k, l, \ldots = 1, \ldots, 4$                                             | четыре внутренних направления, искривленных;              |       |
| $\overline{m}, \overline{n}, \overline{k}, \overline{l}, \ldots = 1, \ldots, 4$ | четыре внутренних направления, плоских;                   | (A.1) |
| $M, N, K, L, \ldots = 1, \ldots, 5$                                             | фундаментальные индексы ExFT (5 $SL(5)$ ), искривленные;  |       |
| $A, B, C, D, \ldots = 1, \ldots, 5$                                             | фундаментальные индексы ExFT (5 $SL(5)$ ), плоские;       |       |
| $\mathcal{M}, \mathcal{N}, \mathcal{K}, \mathcal{L}, \ldots = 1, \ldots, 10$    | индексы обобщенного пространства ExFT ( $10 $ SL( $5$ )); |       |
| $\alpha, \beta, \gamma, \ldots = 1, \ldots, N$                                  | индексы нумерующие вектора Киллинга;                      |       |
| $a, b, c, d, \ldots = 0, \ldots, 2$                                             | первые три направления AdS <sub>4</sub> в Пуанкаре патче. |       |

Обобщенное пространство SL(5) ExFT параметризуется координатами  $\mathbb{X}^{\mathcal{M}}$ . Однако на практике оказывается более удобным записывать представления через фундаментальные 5 индексы  ${
m SL}(5)$   $\mathbb{X}^{MN} = -\mathbb{X}^{NM}$ . Правила перехода от индексов представления 10 к антисимметричной паре индексов представления 5 осуществляется по следующим правилам:

$$T^{\mathcal{M}} \to T^{MN},$$
 для любого тензора,  
 $U^{\mathcal{M}}V_{\mathcal{M}} \to \frac{1}{2}U^{MN}V_{MN},$  (A.2)  
 $\delta^{\mathcal{M}}_{\mathcal{N}} \to 2\delta^{MN}_{KL},$  только для символа Кронекера.

Здесь во второй строчке введен множитель 1/2 для того, чтобы не учитывать одинаковые компоненты дважды. Для символа Кронекера в третьей строчке введена дополнительная двойка, чтобы по вышеописанным правилам  $\delta_{\mathcal{M}}^{\mathcal{M}} = \frac{1}{2}(2\delta_{MN}^{MN}) = \delta_{MN}^{MN} = 10$ , как это и должно быть. Полностью антисимметричный тензор в *n* измерениях определяется как:

$$\varepsilon_{i_1\dots i_n} = g^{1/2} \epsilon_{i_1\dots i_n}, \qquad \epsilon_{1\dots n} = 1.$$
(A.3)

Тензор кривизны определяется как:

$$[\nabla_{m}, \nabla_{n}]V^{k} = R_{mn}{}^{k}{}_{l}V^{l},$$

$$R_{mn}{}^{k}{}_{l} = \partial_{m}\Gamma_{nl}{}^{k} - \partial_{n}\Gamma_{ml}{}^{k} + \Gamma_{mq}{}^{k}\Gamma_{nl}{}^{q} - \Gamma_{nq}^{k}\Gamma_{ml}{}^{q},$$

$$R_{mn} = R_{km}{}^{k}{}_{n}.$$
(A.4)

В наших обозначениях нетривиальные коммутаторы алгебры AdS:

$$[D, P_a] = P_a, [D, K_a] = -K_a, [M_{ab}, P_c] = -2\eta_{c[a}P_{b]}, [M_{ab}, K_c] = -2\eta_{c[a}K_{b]}, [P_a, K_b] = 2M_{ab} + 2\eta_{ab}D, [M_{ab}, M_{cd}] = -2\eta_{c[a}M_{b]d} + 2\eta_{d[a}M_{b]c}.$$
 (A.5)

Что может быть переписано через коммутационные соотношения для алгебры so(2,3) при помощи переобозначений:

$$J_{ab} = iM_{ab}, J_{0*} = iD, J_{*a} = \frac{i}{2}(P_a - K_a), J_{0a} = \frac{i}{2}(P_a + K_a). (A.6)$$

# Б Алгебра SL(5)

Здесь мы приведем основные сведения об алгебре SL(5), как это было сделано в [42]. Генераторы группы SL(5) в фундаментальном представлении и представлении **10** 

$$(t_J^I)_N^M = \delta_J^M \delta_N^I + \frac{1}{5} \delta_N^M \delta_J^I,$$

$$(t_J^I)_{KL}^{MN} = 4 (t_J^I)_{[K}^{[M} \delta_{L]}^{N]}.$$
(B.1)

Они являются бесследовыми и удовлетворяют коммутационным соотношениям

$$[t_N^M, t_L^K] = \delta_L^M t_N^K - \delta_N^K t_L^M.$$
(B.2)

С использованием соглашений Приложения А

$$(t_J^I t_L^K)^{\mathcal{M}}{}_{\mathcal{N}} = (t_J^I)^{\mathcal{M}}{}_{\mathcal{K}} (t_L^K)^{\mathcal{K}}{}_{\mathcal{N}} = \frac{1}{2} (t_J^I)^{\mathcal{M}}{}_{PQ} (t_L^K)^{PQ}{}_{\mathcal{N}}.$$
(B.3)

Проектор на представление 10 SL(5)

$$\mathbb{P}^{\mathcal{M}}{}_{\mathcal{N}}{}^{\mathcal{K}}{}_{\mathcal{L}} = \frac{1}{3} (t^{I}_{J})^{\mathcal{M}}{}_{\mathcal{N}} (t^{J}_{I})^{\mathcal{K}}{}_{\mathcal{L}}, \tag{B.4}$$

где  $t_J^I t_J^J$  свернуты через символ Кронекера.

Проектор обладает свойством

$$\mathbb{P}^{\mathcal{M}}{}_{\mathcal{N}}{}^{\mathcal{K}}{}_{\mathcal{L}}\mathbb{P}^{\mathcal{L}}{}_{\mathcal{K}}{}^{\mathcal{P}}{}_{\mathcal{Q}} = \frac{1}{4}\mathbb{P}^{\mathcal{M}}{}_{\mathcal{N}}{}^{\mathcal{K}L}{}_{IJ}\mathbb{P}^{IJ}{}_{\mathcal{K}L}{}^{\mathcal{P}}{}_{\mathcal{Q}} = \mathbb{P}^{\mathcal{M}}{}_{\mathcal{N}}{}^{\mathcal{P}}{}_{\mathcal{Q}}, \tag{B.5}$$

что говорит о правильном выборе коэффициента в (Б.4) и дает верное соотношение

$$\mathbb{P}^{\mathcal{M}} \mathcal{N}^{\mathcal{N}} \mathcal{M} = \frac{1}{4} \mathbb{P}^{MN} _{KL} {}^{KL} _{MN} = 24 = dim(adj), \tag{B.6}$$

Прямая проверка показывает, что Y-тензор для SL(5), полученный в [36], выражается через проектор

$$\epsilon^{M\mathcal{M}\mathcal{K}}\epsilon_{M\mathcal{N}\mathcal{L}} = Y^{\mathcal{M}\mathcal{N}}_{\mathcal{K}\mathcal{L}} = -3\mathbb{P}^{\mathcal{M}}_{\mathcal{N}}{}^{\mathcal{K}}_{\mathcal{L}} + \frac{1}{5}\delta^{\mathcal{M}}_{\mathcal{N}}\delta^{\mathcal{K}}_{\mathcal{L}} + \delta^{\mathcal{M}}_{\mathcal{L}}\delta^{\mathcal{K}}_{\mathcal{N}}, \tag{B.7}$$

где  $\epsilon^{M\mathcal{MK}}$  обозначает 5-мерный абсолютно антисимметричный тензор  $\epsilon^{MNKLP}$ .

В обозначениях Приложения А (Б.7) может быть переписано как

$$\epsilon^{TMNKL}\epsilon_{TPQRS} = -3\mathbb{P}^{MN}_{PQ} \mathbb{P}_{RS}^{KL} + \frac{4}{5}\delta^{MN}_{PQ}\delta^{KL}_{RS} + 4\delta^{MN}_{RS}\delta^{KL}_{PQ}.$$
(B.8)

# В Уравнения интергрируемости

Используемые в данном разделе индексы  $\alpha, \beta, \gamma, ...$  являются индексами нумерующими генераторы некоторой алгебры. В применении к деформациям супергравитации они становятся индексами, нумерующими вектора Киллинга.

#### В.1 Уравнения Янга-Бакстера

Рассмотрим квантовое уравнение Янга-Бакстера (уравнения треугольника) [79, 80]

$$R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}.$$
(B.1)

 $R_{ij}$  - эндоморфизм на  $V \otimes V \otimes V$ , где V - некоторое пространство ( $R_{12}$  преобразует 1-ое, 2-ое, и не затрагивает 3-е V, остальные  $R_{ij}$  аналогично).

Из уравнения (B.1) получается классическое уравнение Янга-Бакстера (B.3), путем подстановки в него разложения (B.2) и рассмотрения первого порядка по  $\epsilon$ 

$$R_{ij} = \mathbb{1} + \epsilon r_{ij} + \mathcal{O}(\epsilon^2). \tag{B.2}$$

$$[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}] = 0.$$
(B.3)

 $r_{12} = r^{\alpha\beta} \cdot e_{\alpha} \otimes e_{\beta} \otimes \mathbb{1}$  ( $r^{\alpha\beta}$  полностью антисимметричны, для остальных  $r_{\dots}$  выражение аналогично) элемент алгебры  $A = \mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A}$ . Рассмотрим для примера один из коммутаторов (остальные получаются аналогично)

$$[r_{12}, r_{13}] = r^{\alpha_1 \beta_1} r^{\alpha_1 \beta_1} \cdot [e_{\alpha_1}, e_{\alpha_2}] \otimes e_{\beta_1} \otimes e_{\beta_2}.$$
(B.4)

Используя (B.9) и алгебру ( $[e_{\alpha}, e_{\beta}] = f_{\alpha\beta} \,^{\gamma} e_{\gamma}$ ) мы получаем из (B.3)

$$r^{\alpha_1[\beta_1|}r^{\alpha_2|\beta_2}f_{\alpha_1\alpha_2}{}^{\gamma]} = 0, (B.5)$$

которое появляется в качестве условия на параметр деформации  $\beta^{mn} = r^{\alpha\beta}k_{\alpha}^{m}k_{\beta}^{n}$  в 10-ти мерной супергравитации (1.4), для того чтобы деформированное решение оставалось решением.

#### В.2 Уравнения Френкеля-Мура-Замолодчикова

Теперь попробуем построить обобщение (В.5), ожидаемое в качестве условия на параметр деформации  $\Omega^{mnk} = r^{\alpha\beta\gamma}k^m_{\alpha}k^n_{\beta}k^k_{\gamma}$  в 11-ти мерной супергравитации (4.4).

Обобщением (B.1) является уравнение Френкеля-Мура-Замолодчикова (уравнение тетраэдра) [81]

$$R_{123}R_{124}R_{134}R_{234} = R_{234}R_{134}R_{124}R_{123}.$$
(B.6)

 $R_{ijk}$  - эндоморфизм на  $V \otimes V \otimes V \otimes V$ , где V - некоторое пространство ( $R_{123}$  преобразует 1-ое, 2-ое и 3-е V, и не затрагивает 4-ое V, остальные  $R_{ijk}$  аналогично).

Мы можем рассмотреть классический предел

$$R_{ijk} = \mathbb{1} + \epsilon r_{ijk} + \mathcal{O}(\epsilon^2). \tag{B.7}$$

Первый нетривиальный порядок (В.6)

$$\epsilon^{2} \cdot | \qquad [r_{123}, r_{124}] + [r_{123}, r_{134}] + [r_{123}, r_{234}] + [r_{124}, r_{134}] + [r_{124}, r_{234}] + [r_{134}, r_{234}] = 0.$$
(B.8)

 $r_{123} = r^{\alpha\beta\gamma} \cdot e_{\alpha} \otimes e_{\beta} \otimes e_{\gamma} \otimes \mathbb{1}$  ( $r^{\alpha\beta\gamma}$  полностью антисимметричны, для остальных  $r_{\dots}$  выражение аналогично) элемент алгебры  $A = \mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A}$ . Рассмотрим для примера один из коммутаторов (остальные получаются аналогично)

$$[r_{123}, r_{124}] = r^{\alpha_1 \beta_1 \gamma_1} r^{\alpha \beta \gamma} \cdot (e_{\alpha_1} e_{\alpha} \otimes e_{\beta_1} e_{\beta} - e_{\alpha} e_{\alpha_1} \otimes e_{\beta} e_{\beta_1}) \otimes e_{\gamma_1} \otimes e_{\gamma} = \frac{1}{2} r^{\alpha_1 \beta_1 \gamma_1} r^{\alpha \beta \gamma} \cdot ([e_{\alpha_1}, e_{\alpha}] \otimes \{e_{\beta_1}, e_{\beta}\} + \{e_{\alpha}, e_{\alpha_1}\} \otimes [e_{\beta_1}, e_{\beta}]) \otimes e_{\gamma_1} \otimes e_{\gamma}.$$
(B.9)

Используя (В.9) и алгебру ( $[e_{\alpha}, e_{\beta}] = f_{\alpha\beta} \,^{\gamma} e_{\gamma}$ ) мы получаем из (В.8)

$$\{e_{\alpha_{1}}, e_{\alpha}\} \otimes e_{\gamma_{1}} \otimes e_{\delta} \otimes e_{\gamma} \cdot (r^{\alpha_{1}\beta_{1}[\delta]}r^{\alpha\beta|\gamma|}f_{\beta_{1}\beta}^{|\gamma_{1}]}) + e_{\delta_{1}} \otimes \{e_{\alpha_{1}}, e_{\alpha}\} \otimes e_{\delta} \otimes e_{\gamma} \cdot (r^{\alpha_{1}\beta_{1}\delta}r^{\alpha\beta\gamma}f_{\beta_{1}\beta}^{\delta_{1}} + r^{\alpha_{1}\beta_{1}\delta_{1}}r^{\alpha\beta\gamma}f_{\beta_{1}\beta}^{\delta_{1}} - r^{\alpha_{1}\beta_{1}\delta_{1}}r^{\alpha\beta\delta}f_{\beta_{1}\beta}^{\gamma}) + e_{\delta_{1}} \otimes e_{\gamma_{1}} \otimes \{e_{\alpha_{1}}, e_{\alpha}\} \otimes e_{\gamma} \cdot (-r^{\alpha_{1}\beta_{1}\gamma_{1}}r^{\alpha\beta\gamma}f_{\beta_{1}\beta}^{\delta_{1}} + r^{\alpha_{1}\beta_{1}\delta_{1}}r^{\alpha\beta\gamma}f_{\beta_{1}\beta}^{\gamma} + r^{\alpha_{1}\beta_{1}\delta_{1}}r^{\alpha\beta\gamma}f_{\beta_{1}\beta}^{\gamma}) + e_{\delta_{1}} \otimes e_{\gamma_{1}} \otimes e_{\delta} \otimes \{e_{\alpha_{1}}, e_{\alpha}\} \cdot (r^{\alpha_{1}\beta_{1}[\gamma_{1}]}r^{\alpha\beta|\delta|}f_{\beta_{1}\beta}^{|\delta_{1}]}) = 0.$$
 (B.10)

(B.10) являются буквальным обобщением (B.5). В отличие от (B.5), уравнения (B.10) содержат антикоммутаторы генераторов алгебры, которые в общем случае не принадлежат ей. Данное обстоятельство не позволяет работать с этими уравнениями, также, как это было сделано для (B.5).

Тем не менее, уравнения (В.10) могут быть проверены на конкретных примерах деформаций, построенных в Разделе 4, которые, как мы выяснили, решают уравнения 11-ти мерной супергравитации. Прямая проверка показывает, что уравнения (В.10) не выполняются для этих примеров, что говорит о том, что они не являются общими уравнениями на параметр деформации.

# Г Ковариантная формулировка ExFT в $\Omega$ -фрейме

Здесь мы приведем частичное построение  $\Omega$ -супергравитации (на скалярном уровне), аналогично тому как была построена  $\beta$ -супергравитация [21], и обозначим возникающие проблемы при построении тензорной теории.

#### Г.1 Ковариантная производная для скаляров

Рассмотри обобщенную метрику

$$m_{MN} = |\tilde{h}|^{\frac{1}{10}} \begin{bmatrix} |\tilde{h}|^{-\frac{1}{2}} (\tilde{h}_{mn} \pm W_m W_n) & \mp W_m \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

преобразующуюся при обобщенных диффеоморфизмах, как

$$\delta_{\Lambda^{KL}} m_{MN} = \frac{1}{2} \Lambda^{KL} \partial_{KL} m_{MN} + (\partial_{MK} \Lambda^{LK}) m_{LN} + (\partial_{NK} \Lambda^{LK}) m_{ML} - \frac{2}{5} (\partial_{KL} \Lambda^{KL}) m_{MN}.$$
(Г.2)

При преобразованиях  $\Lambda^{5n}=\Lambda^n$ ее компоненты изменяются как

$$\delta_{\Lambda^k} m_{55} = \Lambda^k \partial_k m_{55} + (\partial_k \Lambda^k) m_{55} + (\partial_k \Lambda^k) m_{55} - \frac{4}{5} (\partial_k \Lambda^k) m_{55} = \Lambda^k \partial_k m_{55} + \frac{6}{5} m_{55} \partial_k \Lambda^k.$$
(\Gamma.3)

$$m_{55} = \pm |\tilde{h}|^{\frac{3}{5}} \implies \delta_{\Lambda^k} |\tilde{h}| = \Lambda^k \partial_k |\tilde{h}| + 2|\tilde{h}| \partial_k \Lambda^k.$$
 (\Gamma.4)

$$\delta_{\Lambda^{5l}} m_{5n} = \Lambda^{5l} \partial_{5l} m_{5n} + (\partial_{5k} \Lambda^{5k}) m_{5n} + (\partial_{n5} \Lambda^{l5}) m_{5l} - \frac{4}{5} (\partial_{5l} \Lambda^{5l}) m_{5n} + (\partial_{nk} \Lambda^{5k}) m_{55} = \\ = \Lambda^l \partial_l m_{5n} + (\partial_n \Lambda^l) m_{5l} + \frac{1}{5} (\partial_l \Lambda^l) m_{5n} + (\partial_{nk} \Lambda^k) m_{55}, \quad (\Gamma.5)$$

$$m_{55} = \pm |\tilde{h}|^{\frac{3}{5}}, \ m_{5n} = \mp |\tilde{h}|^{\frac{1}{10}} W_n, \ \mathcal{L}_{\Lambda^k} |\tilde{h}| = \dots \qquad \Longrightarrow \qquad \delta_{\Lambda^k} W_n = \Lambda^k \partial_k W_n + W_l \partial_n \Lambda^l - |\tilde{h}|^{\frac{1}{2}} \partial_{nk} \Lambda^k.$$
(F.6)

Расммотрим скаляр  $\Phi$ 

$$\delta_{\Lambda^k} \Phi = \Lambda^k \partial_k \Phi, \tag{\Gamma.7}$$

таким образом, его производная  $\partial_{mn} \Phi$  преобразуется следующим способом

$$\delta_{\Lambda^k} \partial_{mn} \Phi = \Lambda^k \partial_k \partial_{mn} \Phi + (\partial_k \Phi) \partial_{mn} \Lambda^k.$$
 (\Gamma.8)

Запишем условие проекции и следствия из него, которые пригодятся нам в дальнейшем

$$\epsilon^{PMNKL}\partial_{MN}\otimes\partial_{KL}=0,\tag{\Gamma.9}$$

$$\partial_k A \partial_{mn} B = -2 \partial_{[m} A \partial_{n]k} B - 2 \partial_{k[m} A \partial_{n]} B - \partial_{mn} A \partial_k B, \qquad (\Gamma.10)$$

подставляя (Г.10) в (Г.8) получим

$$\delta_{\Lambda^k}\partial_{mn}\Phi = \underbrace{\Lambda^k\partial_k\partial_{mn}\Phi + \partial_{mk}\Phi\partial_n\Lambda^k + \partial_{kn}\Phi\partial_m\Lambda^k - \partial_{mn}\Phi\partial_k\Lambda^k}_{\mathcal{L}_{\Lambda^k}\partial_{mn}\Phi} - 2\partial_{[m}\Phi\partial_{n]k}\Lambda^k. \tag{\Gamma.11}$$

Теперь определим производную

$$\partial^{mn} = \pm \frac{1}{2} \epsilon^{mnkl} \partial_{kl}. \tag{\Gamma.12}$$

Используя ее мы можем написать еще одно полезное следствие уравнения проекции (Г.9)

$$\partial_k A \partial^{kn} B = -\partial^{kn} A \partial_k B. \tag{\Gamma.13}$$

Применяя ( $\Gamma$ .10), ( $\Gamma$ .13), ( $\Gamma$ .11) и закон преобразования

$$\delta_{\Lambda^k} \epsilon^{mnkl} = 0 \tag{\Gamma.14}$$

мы получим

$$\delta_{\Lambda^k} \partial^{mn} \Phi = \underbrace{\Lambda^k \partial_k \partial^{mn} \Phi - \partial^{mk} \Phi \partial_k \Lambda^n - \partial^{kn} \Phi \partial_k \Lambda^m}_{\mathcal{L}_{\Lambda^k} \partial^{mn} \Phi} + 3(\partial_p \Phi) \partial^{[mn} \Lambda^{p]}. \tag{\Gamma.15}$$

Подставляя в ( $\Gamma$ .6) выражение для  $W_n$ 

$$W_n = \frac{1}{6} |\tilde{h}|^{\frac{1}{2}} \epsilon_{mnkl} \Omega^{nkl}, \qquad (\Gamma.16)$$

с использованием (Г.4), (Г.10), (Г.13), (Г.14), а также  $\varepsilon^{i_1...i_q j_1...j_{(n-q)}} \varepsilon_{i_1...i_q k_1...k_{(n-q)}} = sgn[\tilde{h}_{mn}]q!(n-q)!\delta^{[j_1}_{k_1}...\delta^{j_{n-q}]}_{k_{n-q}}$  и свойства [mnklp] = 0 (так как индексы пробегают всего 4 значения), мы найдем

$$\delta_{\Lambda^k}\Omega^{mnk} = \underbrace{\Lambda^k \partial_k \Omega^{mnk} - \Omega^{pnk} \partial_p \Lambda^m - \Omega^{mpk} \partial_p \Lambda^n - \Omega^{mnp} \partial_p \Lambda^k}_{\mathcal{L}_{\Lambda^k}\Omega^{mnk}} - 3\partial^{[mn}\Lambda^{k]}. \tag{\Gamma.17}$$

Наконец мы можем определить новую ковариантную производную (ковариантную для скаляров)

$$D^{mn} = \partial^{mn} + \Omega^{mnk} \partial_k, \tag{\Gamma.18}$$

такую, что

$$\delta_{\Lambda^k} D^{mn} \Phi = \mathcal{L}_{\Lambda^k} D \partial^{mn} \Phi. \tag{\Gamma.19}$$

#### Г.2 Q- и R-флаксы

Используя явное выражение для новой ковариантной производной (Г.18), мы можем найти:

$$[D^{mn}, D^{kl}] = R^{[m,n]klq}\partial_q - R^{[k,l]mnq}\partial_q - Q_p^{mn[k}D^{l]p} + Q_p^{kl[m}D^{n]p}, \qquad (\Gamma.20)$$

где мы определили *Q*- и *R*-флаксы, как

$$R^{m,nklq} = 4D^{m,[n}\Omega^{klq]}$$

$$Q_q^{\ klm} = \partial_q \Omega^{klm}.$$
(Г.21)

Из определения (Г.21) и (Г.17), с использованием уравнения проекции и его следствий (Г.9), (Г.10), (Г.13), и [mnklp] = 0, можно получить формулы для преобразований Q- и R-флаксов

$$\Delta_{\Lambda^k} R^{m,nklq} = (\delta_{\Lambda^p} - \mathcal{L}_{\Lambda^p}) R^{m,nklq} = 0,$$
  

$$\Delta_{\Lambda^k} Q_q^{klm} = (\delta_{\Lambda^p} - \mathcal{L}_{\Lambda^p}) Q_q^{klm} = 3D^{[kn} \partial_q L^{m]}.$$
(F.22)

Здесь производная Ли Q– и R–флаксов - стандартные производные Ли, без весовых членов. Отметим, что из ( $\Gamma$ .22) следует, что R-флакс преобразуется как тензор.

#### Г.3 Ковариантная производная для тензорных полей

Теперь мы хотим построить ковариантную производную для тензорных полей. Определим ковариантную производную для вектора, как

$$\nabla^{mn}V^{k} = D^{mn}V^{k} - \Gamma^{mn}{}_{p}{}^{k}V^{p} = D^{mn}V^{k} + \tilde{\Gamma}^{mn}{}_{p}{}^{k}V^{p} - \frac{1}{2}\tilde{\Gamma}^{mn}{}_{q}{}^{q}V^{k}, \qquad (\Gamma.23)$$

$$\Gamma^{mn}{}_{p}{}^{k} = -\tilde{\Gamma}^{mn}{}_{p}{}^{k} + \frac{1}{2}\tilde{\Gamma}^{mn}{}_{q}{}^{q}\delta^{k}_{p}, \qquad (\Gamma.24)$$

обобщение на случай тензоров стандартное.

Требуя, что ( $\Gamma$ .23) преобразуется как тензор (с весом  $\frac{1}{2}$ ), и используя ( $\Gamma$ .17), а также то, что  $V^m$  преобразуется как вектор с весом  $\frac{1}{2}$  (что обясняет вес  $\frac{1}{2}$  для ( $\Gamma$ .23)):

$$\delta_{\Lambda^{KL}}V^M = \frac{1}{2}\Lambda^{KL}\partial_{KL}V^M + \frac{1}{4}V^M\partial_{KL}\Lambda^{KL} + V^P\partial_{NP}\Lambda^{MN}, \qquad (\Gamma.25)$$

$$\delta_{\Lambda^p} V^k = \Lambda^p \partial_p V^k - V^p \partial_p \Lambda^k + \frac{1}{2} V^k \partial_p \Lambda^p, \qquad (\Gamma.26)$$

мы получаем, что  $\Gamma^{mn}{}_{p}{}^{k}$  должно преобразовываться как

$$\Delta_{\Lambda^k} \Gamma^{mn}{}_p{}^k = (\delta_{\Lambda^p} - \mathcal{L}_{\Lambda^p}) \Gamma^{mn}{}_p{}^k = -D^{mn} \partial_p L^k + \frac{1}{2} D^{mn} \partial_l L^l \delta_p^k, \qquad (\Gamma.27)$$

$$\Delta_{\Lambda^k} \tilde{\Gamma}^{mn}{}_p{}^k = (\delta_{\Lambda^p} - \mathcal{L}_{\Lambda^p}) \Gamma^{mn}{}_p{}^k = D^{mn} \partial_p L^k, \qquad (\Gamma.28)$$

где в производной Ли для  $\Gamma^{mn}{}_{p}{}^{k}$  нет веса. Отсюда также можно увидеть закон преобразования для  $\mathcal{T}$ -флакса (следа связности)

$$\mathcal{T}^{n,k} = \tilde{\Gamma}^{mn}{}_{m}{}^{k}, \qquad (\Gamma.29)$$

$$\Delta_{\Lambda^k} \mathcal{T}^{n,k} = (\delta_{\Lambda^p} - \mathcal{L}_{\Lambda^p}) \mathcal{T}^{n,k} = \frac{1}{2} D^{mn} \partial_m L^k = 0, \qquad (\Gamma.30)$$

Для получения явного вида  $\widetilde{\Gamma}^{mn}{}_{p}{}^{k}$  мы используем уравнение

$$\nabla^{mn}\tilde{h}^{kl} = 0, \tag{\Gamma.31}$$

из которого мы находим множество решений  $\tilde{\Gamma}^{mn}{}_{p}{}^{k}$  с неопределенными коэффициентами. Для определения неизвестных коэффициентов мы требуем от полученной  $\tilde{\Gamma}^{mn}{}_{p}{}^{k}$  закона преобразования (Г.28). Такого набора коээфициентов не находится, и по этой причине дальнейшее построение ковариантной теории становится невозможным

Мы предполагаем, что возникшие проблемы могут быть решены путем дополнительной добавки негеометрического потенциал  $A^{MN}_{\mu}$  в ковариантную производную, что требует отдельного исследования.

### Список литературы

- Iosif Bena, Joseph Polchinski, and Radu Roiban. Hidden symmetries of the AdS(5) x S\*\*5 superstring. *Phys. Rev.*, D69:046002, 2004. arXiv:hep-th/0305116, doi:10.1103/PhysRevD. 69.046002.
- Ctirad Klimcik. Yang-Baxter sigma models and dS/AdS T duality. JHEP, 12:051, 2002. arXiv: hep-th/0210095, doi:10.1088/1126-6708/2002/12/051.
- Ctirad Klimcik. On integrability of the Yang-Baxter sigma-model. J. Math. Phys., 50:043508, 2009. arXiv:0802.3518, doi:10.1063/1.3116242.
- [4] Francois Delduc, Marc Magro, and Benoit Vicedo. On classical q-deformations of integrable sigma-models. JHEP, 11:192, 2013. arXiv:1308.3581, doi:10.1007/JHEP11(2013)192.
- [5] Francois Delduc, Marc Magro, and Benoit Vicedo. An integrable deformation of the AdS<sub>5</sub> × S<sup>5</sup> superstring action. Phys. Rev. Lett., 112(5):051601, 2014. arXiv:1309.5850, doi:10.1103/PhysRevLett.112.051601.
- [6] Gleb Arutyunov, Riccardo Borsato, and Sergey Frolov. S-matrix for strings on η-deformed AdS5 x S5. JHEP, 04:002, 2014. arXiv:1312.3542, doi:10.1007/JHEP04(2014)002.
- [7] Gleb Arutyunov, Riccardo Borsato, and Sergey Frolov. Puzzles of  $\eta$ -deformed AdS<sub>5</sub>× S<sup>5</sup>. JHEP, 12:049, 2015. arXiv:1507.04239, doi:10.1007/JHEP12(2015)049.
- [8] G. Arutyunov, S. Frolov, B. Hoare, R. Roiban, and A. A. Tseytlin. Scale invariance of the  $\eta$ -deformed  $AdS_5 \times S^5$  superstring, T-duality and modified type II equations. *Nucl. Phys.*, B903:262-303, 2016. arXiv:1511.05795, doi:10.1016/j.nuclphysb.2015.12.012.
- [9] B. Hoare and A. A. Tseytlin. Type IIB supergravity solution for the T-dual of the  $\eta$ -deformed AdS<sub>5</sub>× S<sup>5</sup> superstring. *JHEP*, 10:060, 2015. arXiv:1508.01150, doi:10.1007/JHEP10(2015) 060.
- [10] B. Hoare and A. A. Tseytlin. On integrable deformations of superstring sigma models related to  $AdS_n \times S^n$  supercosets. Nucl. Phys., B897:448-478, 2015. arXiv:1504.07213, doi:10.1016/j.nuclphysb.2015.06.001.
- [11] Yuho Sakatani, Shozo Uehara, and Kentaroh Yoshida. Generalized gravity from modified DFT. JHEP, 04:123, 2017. arXiv:1611.05856, doi:10.1007/JHEP04(2017)123.
- [12] Jun-ichi Sakamoto, Yuho Sakatani, and Kentaroh Yoshida. Weyl invariance for generalized supergravity backgrounds from the doubled formalism. *PTEP*, 2017(5):053B07, 2017. arXiv: 1703.09213, doi:10.1093/ptep/ptx067.
- [13] Jun-ichi Sakamoto. Integrable deformations of string sigma models and generalized supergravity. PhD thesis, Kyoto U., 2019. arXiv:1904.12827.
- [14] L. Wulff and A. A. Tseytlin. Kappa-symmetry of superstring sigma model and generalized 10d supergravity equations. JHEP, 06:174, 2016. arXiv:1605.04884, doi:10.1007/JHEP06(2016) 174.
- [15] T. Araujo, I. Bakhmatov, E. Ó Colgáin, J. Sakamoto, M. M. Sheikh-Jabbari, and K. Yoshida. Yang-Baxter σ-models, conformal twists, and noncommutative Yang-Mills theory. *Phys. Rev.*, D95(10):105006, 2017. arXiv:1702.02861, doi:10.1103/PhysRevD.95.105006.

- [16] Thiago Araujo, Ilya Bakhmatov, Eoin Ó Colgáin, Jun-ichi Sakamoto, Mohammad M. Sheikh-Jabbari, and Kentaroh Yoshida. Conformal twists, Yang–Baxter σ-models, holographic noncommutativity. J. Phys., A51(23):235401, 2018. arXiv:1705.02063, doi:10.1088/ 1751-8121/aac195.
- [17] Nathan Seiberg and Edward Witten. String theory and noncommutative geometry. JHEP, 09:032, 1999. arXiv:hep-th/9908142, doi:10.1088/1126-6708/1999/09/032.
- [18] I. Bakhmatov, O. Kelekci, E. Ó Colgáin, and M. M. Sheikh-Jabbari. Classical Yang-Baxter Equation from Supergravity. *Phys. Rev.*, D98(2):021901, 2018. arXiv:1710.06784, doi:10. 1103/PhysRevD.98.021901.
- [19] I. Bakhmatov, E. O Colgáin, M. M. Sheikh-Jabbari, and H. Yavartanoo. Yang-Baxter Deformations Beyond Coset Spaces (a slick way to do TsT). JHEP, 06:161, 2018. arXiv: 1803.07498, doi:10.1007/JHEP06(2018)161.
- [20] Ilya Bakhmatov and Edvard T. Musaev. Classical Yang-Baxter equation from  $\beta$ -supergravity. JHEP, 01:140, 2019. arXiv:1811.09056, doi:10.1007/JHEP01(2019)140.
- [21] David Andriot and André Betz. β-supergravity: a ten-dimensional theory with non-geometric fluxes, and its geometric framework. JHEP, 12:083, 2013. arXiv:1306.4381, doi:10.1007/ JHEP12(2013)083.
- [22] Edward Witten. String theory dynamics in various dimensions. Nuclear Physics B, 443(1):85 - 126, 1995. URL: http://www.sciencedirect.com/science/article/pii/ 0550321395001580, doi:https://doi.org/10.1016/0550-3213(95)00158-0.
- [23] N.A. Obers and B. Pioline. U-duality and m-theory. *Physics Reports*, 318(4):113 225, 1999. URL: http://www.sciencedirect.com/science/article/pii/S0370157399000046, doi:https://doi.org/10.1016/S0370-1573(99)00004-6.
- [24] P. K. Townsend. Four lectures on M theory. In High energy physics and cosmology. Proceedings, Summer School, Trieste, Italy, June 10-July 26, 1996, pages 385-438, 1996. arXiv:hep-th/ 9612121.
- [25] E. Cremmer, B. Julia, and Joel Scherk. Supergravity Theory in Eleven-Dimensions. *Phys. Lett.* B, 76:409–412, 1978. doi:10.1016/0370-2693(78)90894-8.
- [26] E. Cremmer, B. Julia, H. Lü, and C.N. Pope. Dualisation of dualities. Nuclear Physics B, 523(1):73 - 144, 1998. URL: http://www.sciencedirect.com/science/article/pii/ S0550321398001369, doi:https://doi.org/10.1016/S0550-3213(98)00136-9.
- [27] E. Cremmer, B. Julia, H. Lü, and C.N. Pope. Dualisation of dualities ii: twisted self-duality of doubled fields and superdualities. *Nuclear Physics B*, 535(1):242-292, 1998. URL: http://www. sciencedirect.com/science/article/pii/S0550321398005525, doi:https://doi.org/10. 1016/S0550-3213(98)00552-5.
- [28] C.N. Pope. Lectures: Kaluza-Klein Theory. http://people.physics.tamu.edu/pope/ihplec. pdf. URL: http://people.physics.tamu.edu/pope/.
- [29] Y. Tanii. N = 8 Supergravity in Six-dimensions. Phys. Lett. B, 145:197-200, 1984. doi: 10.1016/0370-2693(84)90337-X.

- [30] B. de Wit and H. Nicolai. d = 11 Supergravity With Local SU(8) Invariance. Nucl. Phys. B, 274:363-400, 1986. doi:10.1016/0550-3213(86)90290-7.
- [31] Edvard T. Musaev. U-Dualities in Type II and M-Theory: A Covariant Approach. Symmetry, 11(8):993, 2019. doi:10.3390/sym11080993.
- [32] David S. Berman and Malcolm J. Perry. Generalized Geometry and M theory. JHEP, 06:074, 2011. arXiv:1008.1763, doi:10.1007/JHEP06(2011)074.
- [33] David S. Berman, Hadi Godazgar, Mahdi Godazgar, and Malcolm J. Perry. The Local symmetries of M-theory and their formulation in generalised geometry. JHEP, 01:012, 2012. arXiv:1110.3930, doi:10.1007/JHEP01(2012)012.
- [34] David S. Berman, Hadi Godazgar, Malcolm J. Perry, and Peter West. Duality Invariant Actions and Generalised Geometry. JHEP, 02:108, 2012. arXiv:1111.0459, doi:10.1007/ JHEP02(2012)108.
- [35] David S. Berman, Edvard T. Musaev, Daniel C. Thompson, and Daniel C. Thompson. Duality Invariant M-theory: Gauged supergravities and Scherk-Schwarz reductions. JHEP, 10:174, 2012. arXiv:1208.0020, doi:10.1007/JHEP10(2012)174.
- [36] David S. Berman, Martin Cederwall, Axel Kleinschmidt, and Daniel C. Thompson. The gauge structure of generalised diffeomorphisms. JHEP, 01:064, 2013. arXiv:1208.5884, doi:10. 1007/JHEP01(2013)064.
- [37] David S. Berman and Daniel C. Thompson. Duality Symmetric String and M-Theory. Phys. Rept., 566:1-60, 2014. arXiv:1306.2643, doi:10.1016/j.physrep.2014.11.007.
- [38] Olaf Hohm, Dieter Lüst, and Barton Zwiebach. The Spacetime of Double Field Theory: Review, Remarks, and Outlook. Fortsch. Phys., 61:926–966, 2013. arXiv:1309.2977, doi:10.1002/ prop.201300024.
- [39] Gerardo Aldazabal, Diego Marques, and Carmen Nunez. Double Field Theory: A Pedagogical Review. Class. Quant. Grav., 30:163001, 2013. arXiv:1305.1907, doi:10.1088/0264-9381/ 30/16/163001.
- [40] Olaf Hohm and Henning Samtleben. Exceptional Field Theory I:  $E_{6(6)}$  covariant Form of M-Theory and Type IIB. *Phys. Rev. D*, 89(6):066016, 2014. arXiv:1312.0614, doi:10.1103/PhysRevD.89.066016.
- [41] Aidar Abzalov, Ilya Bakhmatov, and Edvard T. Musaev. Exceptional field theory: SO(5,5). JHEP, 06:088, 2015. arXiv:1504.01523, doi:10.1007/JHEP06(2015)088.
- [42] Edvard T. Musaev. Exceptional field theory: SL(5). JHEP, 02:012, 2016. arXiv:1512.02163, doi:10.1007/JHEP02(2016)012.
- [43] Chris D. A. Blair and Emanuel Malek. Geometry and fluxes of SL(5) exceptional field theory. JHEP, 03:144, 2015. arXiv:1412.0635, doi:10.1007/JHEP03(2015)144.
- [44] Olaf Hohm and Henning Samtleben. Exceptional field theory. II. E<sub>7(7)</sub>. Phys. Rev. D, 89:066017, 2014. arXiv:1312.4542, doi:10.1103/PhysRevD.89.066017.

- [45] Hadi Godazgar, Mahdi Godazgar, Olaf Hohm, Hermann Nicolai, and Henning Samtleben. Supersymmetric E<sub>7(7)</sub> Exceptional Field Theory. JHEP, 09:044, 2014. arXiv:1406.3235, doi:10.1007/JHEP09(2014)044.
- [46] Daniel Butter, Henning Samtleben, and Ergin Sezgin. E<sub>7(7)</sub> Exceptional Field Theory in Superspace. JHEP, 01:087, 2019. arXiv:1811.00038, doi:10.1007/JHEP01(2019)087.
- [47] Olaf Hohm and Henning Samtleben. Exceptional field theory. III. E<sub>8(8)</sub>. Phys. Rev. D, 90:066002, 2014. arXiv:1406.3348, doi:10.1103/PhysRevD.90.066002.
- [48] Arnaud Baguet and Henning Samtleben. E<sub>8(8)</sub> Exceptional Field Theory: Geometry, Fermions and Supersymmetry. JHEP, 09:168, 2016. arXiv:1607.03119, doi:10.1007/JHEP09(2016) 168.
- [49] Guillaume Bossard, Franz Ciceri, Gianluca Inverso, Axel Kleinschmidt, and Henning Samtleben.
   E<sub>9</sub> exceptional field theory. Part I. The potential. JHEP, 03:089, 2019. arXiv:1811.04088, doi:10.1007/JHEP03(2019)089.
- [50] Emanuel Malek. U-duality in three and four dimensions. Int. J. Mod. Phys. A, 32(27):1750169, 2017. arXiv:1205.6403, doi:10.1142/S0217751X1750169X.
- [51] C.M. Hull. Timelike T duality, de Sitter space, large N gauge theories and topological field theory. JHEP, 07:021, 1998. arXiv:hep-th/9806146, doi:10.1088/1126-6708/1998/07/021.
- [52] C.M. Hull. Duality and the signature of space-time. JHEP, 11:017, 1998. arXiv:hep-th/ 9807127, doi:10.1088/1126-6708/1998/11/017.
- [53] Emanuel Malek. Timelike U-dualities in Generalised Geometry. JHEP, 11:185, 2013. arXiv: 1301.0543, doi:10.1007/JHEP11(2013)185.
- [54] Ilya Bakhmatov, Nihat Sadik Deger, Edvard T. Musaev, Eoin Ó. Colgáin, and Mohammad M. Sheikh-Jabbari. Tri-vector deformations in d = 11 supergravity. *JHEP*, 08:126, 2019. arXiv: 1906.09052, doi:10.1007/JHEP08(2019)126.
- [55] Ilya Bakhmatov, Kirill Gubarev, and Edvard T. Musaev. Non-abelian tri-vector deformations in d = 11 supergravity. *JHEP*, 05:113, 2 2020. arXiv:2002.01915, doi:10.1007/JHEP05(2020) 113.
- [56] E. Bergshoeff, D. S. Berman, J. P. van der Schaar, and P. Sundell. A Noncommutative M theory five-brane. Nucl. Phys., B590:173-197, 2000. arXiv:hep-th/0005026, doi:10.1016/ S0550-3213(00)00476-4.
- [57] David S. Berman, Martin Cederwall, Ulf Gran, Henric Larsson, Mikkel Nielsen, Bengt E.W. Nilsson, and Per Sundell. Deformation independent open brane metrics and generalized theta parameters. JHEP, 02:012, 2002. arXiv:hep-th/0109107, doi:10.1088/1126-6708/2002/02/ 012.
- [58] Jun-Ichi Sakamoto and Yuho Sakatani. Local  $\beta$ -deformations and Yang-Baxter sigma model. JHEP, 06:147, 2018. arXiv:1803.05903, doi:10.1007/JHEP06(2018)147.
- [59] Aybike Çatal-Ozer and Nihat Sadik Deger. Beta, Dipole and Noncommutative Deformations of M-theory Backgrounds with One or More Parameters. *Class. Quant. Grav.*, 26:245015, 2009. arXiv:0904.0629, doi:10.1088/0264-9381/26/24/245015.

- [60] Nihat Sadik Deger and Ali Kaya. Deformations of Cosmological Solutions of D=11 Supergravity. Phys. Rev., D84:046005, 2011. arXiv:1104.4019, doi:10.1103/PhysRevD.84.046005.
- [61] T. Araujo, E. Ó Colgáin, J. Sakamoto, M. M. Sheikh-Jabbari, and K. Yoshida. *I* in generalized supergravity. *Eur. Phys. J.*, C77(11):739, 2017. arXiv:1708.03163, doi:10.1140/epjc/ s10052-017-5316-5.
- [62] Yvette Kosmann. Dérivées de Lie des spineurs. Annali di Matematica Pura ed Applicata, 91:317– 395, 1971. doi:10.1007/BF02428822.
- [63] Jose Miguel Figueroa-O'Farrill. On the supersymmetries of Anti-de Sitter vacua. Class. Quant. Grav., 16:2043-2055, 1999. arXiv:hep-th/9902066, doi:10.1088/0264-9381/16/6/330.
- [64] Domenico Orlando, Susanne Reffert, Yuta Sekiguchi, and Kentaroh Yoshida. Killing spinors from classical r-matrices. J. Phys. A, 51(39):395401, 2018. arXiv:1805.00948, doi:10.1088/ 1751-8121/aad8c2.
- [65] Domenico Orlando, Susanne Reffert, Yuta Sekiguchi, and Kentaroh Yoshida. SUSY and the bi-vector. Phys. Scripta, 94(9):095001, 2019. arXiv:1811.11764, doi:10.1088/1402-4896/ ab1ab9.
- [66] Domenico Orlando, Susanne Reffert, Jun-ichi Sakamoto, Yuta Sekiguchi, and Kentaroh Yoshida. Yang-Baxter deformations and generalized supergravity - A short summary. 12 2019. arXiv: 1912.02553.
- [67] Yuho Sakatani. U-duality extension of Drinfel'd double. PTEP, 2020(2):023B08, 2020. arXiv: 1911.06320, doi:10.1093/ptep/ptz172.
- [68] Yuho Sakatani and Shozo Uehara. Non-Abelian U-duality for membrane. 2020. arXiv:2001. 09983.
- [69] Emanuel Malek and Daniel C. Thompson. Poisson-Lie U-duality in Exceptional Field Theory. JHEP, 04:058, 2020. arXiv:1911.07833, doi:10.1007/JHEP04(2020)058.
- [70] A. B. Zamolodchikov. Tetrahedron equations and the relativistic s-matrix of straight-strings in 2 + 1-dimensions. Comm. Math. Phys., 79(4):489-505, 1981. URL: https://projecteuclid. org:443/euclid.cmp/1103909139.
- [71] Igor Frenkel and Gregory Moore. Simplex equations and their solutions. Comm. Math. Phys., 138(2):259-271, 1991. URL: https://projecteuclid.org:443/euclid.cmp/1104202944.
- [72] Jonathan Bagger and Neil Lambert. Modeling Multiple M2's. Phys. Rev., D75:045020, 2007. arXiv:hep-th/0611108, doi:10.1103/PhysRevD.75.045020.
- [73] Jonathan Bagger and Neil Lambert. Gauge symmetry and supersymmetry of multiple M2branes. Phys. Rev., D77:065008, 2008. arXiv:0711.0955, doi:10.1103/PhysRevD.77.065008.
- [74] Ofer Aharony, Oren Bergman, Daniel Louis Jafferis, and Juan Maldacena. N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals. JHEP, 0810:091, 2008. arXiv:0806.1218, doi:10.1088/1126-6708/2008/10/091.
- [75] Juan Martin Maldacena and Jorge G. Russo. Large N limit of noncommutative gauge theories. JHEP, 09:025, 1999. arXiv:hep-th/9908134, doi:10.1088/1126-6708/1999/09/025.

- [76] Emiliano Imeroni. On deformed gauge theories and their string/M-theory duals. JHEP, 0810:026, 2008. arXiv:0808.1271, doi:10.1088/1126-6708/2008/10/026.
- [77] Stijn J. van Tongeren. Yang-Baxter deformations, AdS/CFT, and twist-noncommutative gauge theory. Nucl. Phys., B904:148-175, 2016. arXiv:1506.01023, doi:10.1016/j.nuclphysb. 2016.01.012.
- [78] Carmelo P. Martin, Josip Trampetic, and Jiangyang You. Quantum noncommutative ABJM theory: first steps. JHEP, 04:070, 2018. arXiv:1711.09664, doi:10.1007/JHEP04(2018)070.
- [79] E. K. Sklyanin P. P. Kulish. Solutions of the Yang-Baxter equation. Journal of Soviet Mathematics, 1982. doi:10.1007/BF01091463.
- [80] Drinfel'd V. G. Belavin, A. A. Solutions of the classical Yang Baxter equation for simple Lie algebras. Functional Analysis and Its Applications, 1982. doi:10.1007/BF01081585.
- [81] Vladimir V. Bazhanov and Sergey M. Sergeev. Zamolodchikov's tetrahedron equation and hidden structure of quantum groups. J. Phys. A, 39:3295–3310, 2006. arXiv:hep-th/0509181, doi:10.1088/0305-4470/39/13/009.