Федеральное государственное автономное образовательное учреждение

высшего образования

«Московский физико-технический институт

(национальный исследовательский университет)»

Физтех-школа физики и исследований им. Ландау

Кафедра теоретической астрофизики и квантовой теории поля

Направление подготовки/специальность: 03.04.01 Прикладные математика и физика (магистратура)

Направленность (профиль) подготовки: Проблемы теоретической физики

Квантовая механика, суммирование по графам и критические явления, голографическое соответствие

(магистерская диссертация)

Студент:

Кочергин Даниил Сергеевич

Научный руководитель:

д.ф.-м.н. Горский Александр Сергеевич

Москва2020

Содержание

Введение			3
1	Ква	нтовая механика в терминах eta -ансамбля	4
2	Суммирование по графам		6
	2.1	Случай супердеревьев	6
	2.2	Дерево Эрмита	8
	2.3	Счет путей для дерева Эрмита	10
3	Представление Вигнера для графов		12
	3.1	Матрицы перехода для квантового осциллятора в представлении Вигнера .	12
	3.2	Связь элементов графа Лагерра и дерева Эрмита	13
	3.3	Вид графа Лагерра	15
	3.4	Счет путей для графа Лагерра	16
4	4 Дополнительные физические модели		17
За	Заключение		
$\mathbf{\Pi}$	Іитература		

Введение

Связь квантовой механики с проблемой блужданий по графам впервые была представлена в контексте локализации многих тел [1]. В этой работе волновая функция многочастичной системы с парным электрон-электрон взаимодействием аппроксимируется суммой по путям одной частицы, двигающейся по решетке Бете. Решетка Бете имитирует пространство Фока, в котором узел играл роль определенного состояния, а связь между узлами означает ненулевой матричной элемент оператора взаимодействия. Являясь приблизительной, данная модель позволяет сделать важные выводы о локализации многочастичных систем [2]. Для лучшего полного понимания данного соответствия необходимо рассмотреть более простые модели. Основная часть данной работы рассматривает квантовую механику и ее представление в виде графов на примере гармонического осциллятора.

Существует другая важная особенность данного подхода. Известно, что статистическая сумма может быть выведена через интеграл по путям в координатном или фазовом пространстве или же может быть представлена в виде взвешенной суммы по гильбертовому пространству собственных векторов в энергетическом представлении. Волновую функцию, так же как и статистическую сумму, можно записать через путевой интеграл. Аналогично этому существует возможность получить волновую функцию через сумму по путям в гильбертовом пространстве. Для этого необходимо точно описать возможные пути в пространстве Гильберта. Простейшим примером для этой задачи может являться гармонический осциллятор.

1 Квантовая механика в терминах β -ансамбля

Рассмотрение квантовых систем с точки зрения графов необходимо начать с со связи между моделью β -ансамбля, случайными матрицами и квантовой механикой [3, 4]. Соответствие между статистической механикой в СFT и квантовой теорией было впервые установлено в работах [5, 6] для обобщенного ангармонического осциллятора. Связь между двумя теориями проявляется с одной стороны из спектрального детерминанта уравнения Шредингера, а с другой стороны из Q-операторов в CFT с конформным зарядом c < 1. Помимо квантовой механики модель β -ансамбль позволяет описать в различных пределах другие теории, такие как квантовая геометрия или же предел Некрасова-Шаташвили [7] для усовершенствованных топологических струн.

Для выведения квантовой механики из β -ансамбля необходимо начать со статической суммы ансамбля с N собственных значений матрицы M:

$$Z_{\mathcal{C}}(N,\beta,g_s) = \int_{\mathcal{C}} [d\lambda] \Delta(\lambda)^{2\beta} e^{-\frac{\beta}{g_s} \sum_{i=1}^{N} W(\lambda_i)}, \qquad (1)$$

где $\Delta(\lambda)$ – детерминант Вандермонда, $\Delta(\lambda) = \prod_{i < j}^{N} (\lambda_i - \lambda_j)$, C – путь интегрирования в комплексной плоскости, β – положительное число. N – собственными значениями и потенциалом $W(\lambda)$. Средней значение оператора оператора определяется как

$$\langle \mathcal{O} \rangle := \int_{\mathcal{C}} [d\lambda] \Delta(\lambda)^{2\beta} e^{-\frac{\beta}{g_s} \sum_{i=1}^{N} W(\lambda_i)}, \qquad (2)$$

Чтобы получить волновую функцию необходимо рассмотреть следующий оператор браны $\psi(x) = \prod_{i=1}^{N} (\lambda_i - x)^{\beta} = \det (M - x)^{\beta}$. Его коррелятор определяется следующим образом:

$$\Psi(x) = e^{-\frac{\beta}{g_s}W(x)} \frac{\langle \psi(x) \rangle}{\langle 1 \rangle}.$$
(3)

В пределе, соответствующем квантовой механике ($N \to \infty$, таких что $\mathcal{N} = \beta N =$ const), данный коррелятор выполняет роль волновой функции в уравнении Шредингера

$$\hbar^2 \Psi''(x) = \left((W'(x))^2 - f(x) \right), \tag{4}$$

где

$$f = \hbar(W''(x) + 2c(x) + d(x)),$$
(5)

$$c = \lim_{\beta \to 0} \beta N \frac{W'(x) - W'(0)}{x}, \qquad d = \hbar \lim_{\beta \to 0} \beta \hat{D} \ln\langle 1 \rangle.$$
(6)

В это случае энергия квантовомеханической системы определяется следующим образом:

$$E = \hbar(W''(0) + 2c(0) + f(0)).$$
(7)

Для гауссового потенциала $W(x)=\frac{1}{2}x^2$ уравнение Шредингера приобретает вид

$$-\frac{\hbar^2}{2}\Psi''(x) + \frac{x^2}{2}\Psi(x) = E\Psi(x),$$
(8)

а его энергия равна

$$E = \hbar \left(\frac{1}{2} + \lim_{\beta \to 0} (\beta N)\right). \tag{9}$$

Стоить отметить что в случае гармонического потенциала, распределение случайных значений принимает вид эрмитового ансамбля [8], а сама случайная матрица может быть записана в тридиагональном виде. Используя тригональную матрицу, можно записать волновую функцию и без перехода к пределу больших N. Для осциллятора оператор \hat{X} в пространстве Фока имеет вид тридиагональной матрицу $n \times n$, что дает полиномы Эрмита

$$H_n \propto \det_{n \times n} (\hat{X} - x). \tag{10}$$

Аналогично обозначенному выше QM/CFT соответствию, связь между теориями происходит благодаря спектральному детерминанту. Однако, усредненный спектральный детерминант β -ансамбля соответствует представлению волновой функции, через спектральный определитель оператора в пространстве Фока. Это подводит нас задаче определения вида путей в пространстве Гильберта.

2 Суммирование по графам

2.1 Случай супердеревьев

Отличительной чертой суммирования путей по неоднородным графам является, то что разветвление графа не постоянно. Поэтому приходиться отличать проблему расчета путей (path counting, PC) и статистику случайных блуждания (random walk, RW). Разница между двумя подходами заключается в том, как происходит нормировка простейшего шага. Для случайных блужданий вероятность прохождения из узла по одному из путей одинакова. В проблеме случайных блужданий вес всех путей одинаков и равен единице, независимо от число разветвления на данной вершине [9]. Если граф имеет постоянное ветвление статистическая сумма PC и вероятность распределения PW отличаются только на глобальную нормализующую константу и соответствующие средние значение неразличимы.

Для нахождения статистической суммы для произвольного графа \mathcal{G} с матрицей связности \mathcal{A} нужно рассмотреть число возможных путей из одной вершин графа в другую. Матричный элемент перехода из одной вершины в другую имеет вид

$$\langle i|\mathcal{A}|j\rangle$$
 (11)

Полное число путей прошедших расстояние k за N шагов начиная из i-ого узла имеет следующим образом:

$$Z_N^{(i)}(k) = \sum_{j:k=dist(i,j)} \langle i | \mathcal{A}^N | j \rangle$$
(12)

Задача расчета путей упрощается в случае деревоподобного графа. Деревом называется граф, в котором пути блуждания частицы по нему не создают циклы. В дополнение к этому возьмем дерево, в котором присутствуют дополнительные симметрии. Существует корневой узел, из которого выходят p_0 ветвей. Из образовавшихся p_0 узлов выходят по $p_1 + 1$ ветвей и т.д. Таким образом, дерево разделяется на уровни на равных числом разветвлений, каждый уровень обозначим номером k. Если каждое последующее число разветвление меньше или равно предыдущему ($p_k \ge p_{k+1}$), то получаем конечный граф с числом уровней K. Такое дерево называется решеткой Бете. Согласно [10] набор собственных значений матрицы связности может представлен как набор собственных значений тридиагональной матрицы A размерностью $K \times K$ и ее подматриц. Матричные элементы данной матрицы имеют вид

$$\begin{cases}
 a_{k,k} = 0 \\
 a_{K,K-1} = a_{K-1,K} = \sqrt{p_0} \\
 a_{k,k-1} = a_{k-1,k} = \sqrt{p_i} \quad (k = 2, .., K - 1)
 \end{cases}$$
(13)

В данной главе рассматривается проблема подсчета путей для симметричных конечных супердеревьев [11], \mathcal{T}^+ и \mathcal{T}^- , с K уровнями. Степень разветвления непостоянна, но линейно зависит от текущего уровня k (k = 0, 1, 2, ..., K - 1). Для восходящего дерева \mathcal{T}^+ разветвление параметризуется следующим образом:

$$p_k = \begin{cases} p_0 & \text{при } k = 0, \\ 1 + a. & \text{при } k \ge 1, a \ge 0, \end{cases}$$
(14)

для нисходящего \mathcal{T}^- :

$$p_{k} = \begin{cases} p_{0} & \text{при } k = 0, \\ p_{0} - ak & \text{при } k \ge 1, a \ge 0. \end{cases}$$
(15)

Скорость ветвления a – постоянная неотрицательная целочисленная константа, p_0 обозначает ветвление корня дерева при k = 0. Деревья \mathcal{T}^{\pm} соответствует конечному пределу симметричного пространства Римана с непостоянной отрицательной кривизной.

Для супердеревьев \mathcal{T}^{\pm} статистическая сумма $Z_N(k)$ дает следующие рекуррентное соотношение:

$$\begin{cases}
Z_{N=0} = \delta_{k,0} \\
Z_{N+1}(k) = Z_N(k+1) & k = 0 \\
Z_{N+1}(k) = p_{k-1}Z_N(k-1) + Z_N(k+1) & 1 \le k \le K-2 \\
Z_{N+1}(k) = p_{k-1}Z_N(k-1) & k = K-1
\end{cases}$$
(16)

Данное рекуррентное соотношение можно переписать в матричной форме. Для этого необходимо построить вектор размерности $K, Z_N = (Z_N(0), Z_N(2), ..., Z_N(K-1))^T$. Тогда эволюция Z_N по N:

$$Z_{N+1} = TZ_N,\tag{17}$$

где

$$\hat{T} = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ p_0 & 0 & 1 & 0 & \dots & 0 \\ 0 & p_1 & 0 & 1 & \dots & 0 \\ 0 & 0 & p_2 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix}, \qquad Z_{N=0} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$
(18)

Далее матрица \hat{T} диагонализуется. Характеристический полином, $P_k(\lambda) = \det(\hat{T} - \lambda \hat{I})$, матрицы \hat{T} размерностью $k \times k$ удовлетворяет рекуррентному соотношению.

$$\begin{cases}
P_1 = -\lambda \\
P_2 = \lambda^2 - p_0 \\
P_k = -\lambda P_{k-1} - p_k P_{k-2} \quad 3 \le k \le K.
\end{cases}$$
(19)

В случае восходящего дерева при $p_0 = 1$, a = 1 и нисходящего дерева \mathcal{T}^- при a = 1и $p_0 = K - 1$ рекуррентные соотношения (19) дают полиномы Эрмита H_k .

Так же стоит отметить, эквивалентность матриц перехода (18) и матриц, получившихся из нахождения собственных значений матрицы связанности (13). Это обосновано тем, что во все основные формулы будет входить определитель от этих матриц.

2.2 Дерево Эрмита

Из-за того что матрицы перехода обоих деревьев дают одно и то же решение, для выбора правильного вида дерева, относящегося к модели квантового гармонического осциллятора, необходимо рассмотреть их матрицы связности. Вначале рассмотрим матрицу связности \mathcal{A} нисходящего дерева \mathcal{T}^- :

$$\mathcal{A} = \begin{pmatrix} 0 & C_1 & 0 & 0 & \dots \\ C_1^T & 0 & C_2 & 0 & \dots \\ 0 & C_2^T & 0 & C_3 & \dots \\ 0 & 0 & C_3^T & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$
(20)

где C_i - это матрицы $n_i \times n_{i+1}$ (n_k обозначает общее число вершин на уровне k). В качестве примера может выступать дерево с четырьмя уровнями, тогда матрица будет иметь следующие C_i :

$$C_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad C_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad C_{3} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$
(21)

Используя теорему из [10] можно найти факторизацию по характеристическим полиномам матрицы связности (20) для эрмитового полинома. Для этого применяется метод Гаусса к матрице ($\lambda I - A$). Что дает

$$\begin{pmatrix} \beta_{1}I & C_{1} & 0 & 0 & \dots \\ 0 & \beta_{2}I & C_{2} & 0 & \dots \\ 0 & 0 & \beta_{3}I & C_{3} & \dots \\ 0 & 0 & 0 & \beta_{4}I & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix},$$
(22)

где

$$\beta_{1} = \lambda = \frac{H_{1}}{H_{0}}$$

$$\beta_{2} = \lambda - \frac{n_{1}}{n_{2}} \frac{1}{\beta_{1}} = \frac{\lambda H_{1} - H_{0}}{H_{1}} = \frac{H_{2}}{H_{1}}$$

$$\beta_{3} = \lambda - \frac{n_{2}}{n_{3}} \frac{1}{\beta_{2}} = \frac{\lambda H_{2} - H_{1}}{H_{2}} = \frac{H_{3}}{H_{2}}$$
(23)

$$\beta_k = \lambda - \frac{n_{k-1}}{n_k} \frac{1}{\beta_{k-1}} = \frac{H_k}{H_{k-1}}$$

В таком случае спектр дерева определяется следующим образом:

...

$$\det(\lambda I - \mathcal{A}) = H_k(\lambda) \prod_i H_i^{n_i - n_{i+1}}(\lambda).$$
(24)

Изученное нисходящее дерево \mathcal{T}^- из работы [11] дает разложение спектрального детерминанта по полиномам Эрмита. Применение этого метода для восходящего дерева \mathcal{T}^+ не даст разложение по полиномам Эрмита. Нисходящее дерево имеет смысл называть деревом Эрмита. Оно является примером решетки Бете. Дерево Эрмита дает вид гильбертового пространства для гармонического осциллятора в координатном представлении. Его вид представлен на рис. 2.2.

Как известно собственные функции оператора уничтожения для квантового осциллятора дают систему когерентных состояний. Разложение по когерентным состояниям

Рис. 1: Дерево Эрмита для (21). Уровни k соответствуют параметризации (15) с $p_0 = 3$ и a = 1.

делает систему сверхполной. Система будет считаться полной, если число когернтных состояний таково, что площадь, выделенная на каждое когерентное состояние в фазовом пространстве, будет равна π [12]. Эволюция полной системы дает подсказку к Комплексити, построенного из когерентных состояний. Для этого используем метод подсчета возможных переходов системы [13] в другие состояния. Однако, в отличии от случая когда Комплексити построено из кубитов, нам необходимо для перехода на следующий уровень изменить число одно когерентных состояний. Если мы возьмем *n*-е состояние, то для переход к (n-1), нужно убрать одно когерентное состояние, чтобы система осталась полной. Это можно сделать *n* способами. Тогда система перейдет в (n-1). Следующий шаг похож на предыдущий. Для перехода в (n-2)-е состояние. Нужно убрать одно состояние, и для этого есть (n-1) возможных способов. Эту процедуру можно повторять до того как система перейдет в основное состояние. Построение графа возможных событий таким способом дает нисходящее дерево или дерево Эрмита.

2.3 Счет путей для дерева Эрмита

Для установления связи между спектром полиномов H_k и расчетом путей на дереве Эрмита рассматривается рассматривается производящая функция следующего вида

$$\mathcal{Z}(s,k) = \sum_{N=0}^{\infty} Z_N(k) s^N \qquad Z_N(k) = \frac{1}{2\pi i} \oint \mathcal{Z}(s,k) s^{-N-1} ds \tag{25}$$

Для нисходящего дерева \mathcal{T}^{-} [11] при a = 1 и $p_0 = K - 1$ подстановка (16) в (25)

дает

$$\begin{cases} s^{-1}\mathcal{Z}^{-}(s,k) = (K-k)\mathcal{Z}^{-}(s,k-1) + \mathcal{Z}^{-}(s,k+1) & \text{для } 1 \le k \le K-2, \\ s^{-1}\mathcal{Z}^{-}(s,K-1) = \mathcal{Z}^{-}(s,K-2). \end{cases}$$
(26)

Наиболее важным является расчет канонической статистической суммы $\mathcal{Z}^{-}(s, k = 0) = \mathcal{Z}_{K}^{-}(s)$. Она дает траектории начавшиеся и закончившиеся в корневой вершине. Каждый шаг происходит с весом s^{-1} .

$$\mathcal{Z}_{K}^{-}(s) = \frac{H_{K-1}(s^{-1})}{sH_{K}(s^{-1})}.$$
(27)

Координата в физическом пространстве играет роль обратного веса простейшего шага в гильбертовом пространстве по дереву Эрмита.

Из (23) можно увидеть, что спектр графа \mathcal{T}^- раскладывается по каноническим статистическим функциям его подграфов, которые начинаются с различных вершин и также имеет вид ниспадающих деревьев. Это позволяет переписать соотношение (24) в виде

$$\det(\mathcal{A} - \lambda I) = \lambda^N \prod_k \frac{1}{\mathcal{Z}_k^-(\lambda^{-1})^{n_k}}.$$
(28)

3 Представление Вигнера для графов

В предыдущей главе рассматривался квантовый гармонический осциллятор в координатном представлении. Однако, как и в классической механике систему можно описать использовав фазовое пространство [14]. Этот способ рассмотрения квантовомеханической системы называется представлением Вигнера. Целью данного раздела было нахождение графа соответствующего функции Вигнера (аналог волновой функции для фазового пространства).

Стационарное уравнение в фазовом пространстве выглядит следующим образом:

$$\mathcal{H}(x,p) \star F(x,p) = EF(x,p) = F \star \mathcal{H}, \tag{29}$$

где $\mathcal H$ – гамильтониан системы,
 F – функция Вигнера. \star обозначает Мояловское произведение:

$$f \star g = f(x + \frac{1}{2}i\hbar\overrightarrow{\partial_p}, p - \frac{1}{2}i\hbar\overrightarrow{\partial_x})g(x, p) = f(x, p)g(x - \frac{1}{2}i\hbar\overleftarrow{\partial_p}, p + \frac{1}{2}i\hbar\overleftarrow{\partial_x}).$$
(30)

Решением уравнением (29) для гармонического осциллятора является

$$F_n(x,p) = \frac{(-1)^n}{\pi\hbar} L_n\left(\frac{x^2 + p^2}{\hbar/2}\right) e^{-(x^2 + p^2)/\hbar}$$
(31)

Таким образом система должна соответствовать графу, для которого характеристические полиномы от матрицы перехода – это полиномы Лагерра L_n .

3.1 Матрицы перехода для квантового осциллятора в представлении Вигнера

Для определения структуры графа вначале необходимо найти вид матрицы перехода \hat{T}^L со спектральным определителем в виде полиномов Лагерра, а далее найти такую матрицу связности факторизация характеристического полинома которой давала полиномы Лагерра.

Возьмем параметризацию нисходящего дерева \mathcal{T}^- (15). В таком случае, полином Лагерра можно задать как произведение матрицы и ее же транспонированной:

$$\hat{L} = \hat{B}\hat{B}^T,\tag{32}$$

где

$$\hat{B} = \begin{pmatrix} \sqrt{p_0} & 0 & 0 & \dots & 0 \\ \sqrt{p_0} & \sqrt{p_1} & 0 & \dots & 0 \\ 0 & \sqrt{p_1} & \sqrt{p_2} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \sqrt{p_{n-1}}, \end{pmatrix}$$
(33)
$$\hat{L} = \begin{pmatrix} p_0 & p_0 & 0 & \dots & 0 \\ p_0 & p_0 + p_1 & p_1 & \dots & 0 \\ 0 & p_1 & p_1 + p_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & p_{n-2} + p_{n-1} \end{pmatrix}$$
(34)

$$P_n(\lambda) = \det(\hat{L} - \lambda \hat{I}) \tag{35}$$

$$L_n(\lambda) = \frac{1}{n!} P_n(\lambda) \tag{36}$$

Если следовать обозначениям и определения величин из обзора [14], то для фазового пространства $\lambda = 2 \frac{x^2 + p^2}{\hbar}$.

Имеет место быть равенство: $\det(\hat{L} - \lambda \hat{I}) = \det(\hat{T} - \lambda \hat{I})$, где матрица \hat{T} имеет вид

$$\hat{T}^{L} = \begin{pmatrix} p_{0} & 1 & 0 & \dots & 0 \\ p_{0}^{2} & p_{0} + p_{1} & 1 & \dots & 0 \\ 0 & p_{1}^{2} & p_{1} + p_{2} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & p_{n-2} + p_{n-1} \end{pmatrix}$$
(37)

Из вида (37) можно предположить вид графа. Помимо квадратичного увеличения числа вершин на каждом уровне, из-за ненулевой главной диагонали, мы могут появиться петли.

3.2 Связь элементов графа Лагерра и дерева Эрмита

Из чисто математических соображения получили формулу для связи Лагеррова дерева и Эрмитова дерева:

$$(T^{L})_{mn} = \frac{1}{2} \left((T^{H}_{x})^{2}_{mn} - (T^{H}_{p})^{2}_{mn} + (T^{H}_{x})_{ml} (T^{H}_{x})_{ln} + (T^{H}_{p})_{ml} (T^{H}_{p})_{ln} \right),$$
(38)

где

$$T_x^H = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ p_0 & 0 & 1 & 0 & \dots & 0 \\ 0 & p_1 & 0 & 1 & \dots & 0 \\ 0 & 0 & p_2 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix}, \qquad T_p^H = \begin{pmatrix} 0 & -i & 0 & 0 & \dots & 0 \\ ip_0 & 0 & -i & 0 & \dots & 0 \\ 0 & ip_1 & 0 & -i & \dots & 0 \\ 0 & 0 & ip_2 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix}.$$
(39)

Матрица T_x^H – естественно появляется из описания координатного представления. T_p^H – вспомогательная матрица перехода, соответствующая импульсному пространству. Необходимость ее введения объясняется тем, что преставление Вигнера включается в себя равнозначно координату и импульс.

Физическую верность формулы (38) можно увидеть из основного уравнения Вигнера (29). Расписанное звездное произведение для квадратичного потенциала имеет вид

$$\mathcal{H} \star F = \left(\frac{1}{2}(p - \frac{i}{2}\hbar\partial_x)^2 + \frac{1}{2}(x + \frac{i}{2}\hbar\partial_p)^2\right)F = EF,\tag{40}$$

$$F \star \mathcal{H} = \left(\frac{1}{2}(p + \frac{i}{2}\hbar\partial_x)^2 + \frac{1}{2}(x - \frac{i}{2}\hbar\partial_p)^2\right)F = EF.$$
(41)

Полусумма последних двух выражений (40) и (41):

$$\frac{1}{2}\left(\mathcal{H}\star F + F\star\mathcal{H}\right) = \frac{1}{2}\left(-\frac{\hbar^2}{4}\partial_x^2 - \frac{\hbar^2}{4}\partial_p^2 + x^2 + p^2\right)F = EF.$$
(42)

Получили похожую структура, что и в (38). Для удобства в дальнейшем будем считать $\hbar = 1$.

Матричные элементы дерева Лагерра можно получить с помощью формулы

$$I_{mn} = 2(x^2 + p^2)_{mn} = 2 \int F_m^*(x^2 + p^2) F_n dx dp.$$
(43)

Рассмотрим слагаемое с x^2 . Для этого представим функцию Вигнера через волновые функции в *x*-представление:

$$F_n = \int \psi_n^*(x+y)\psi_n(x-y)e^{2ipy}dy.$$
(44)

Отсюда получим для слагаемого с x^2 :

$$\int F_m^* x^2 F_n dx dp = \int \psi_m(x+z) \psi_n^*(x-z) e^{-2ipz} x^2 \psi_n^*(x+y) \psi_n(x-y) e^{2ipy} dy dz dx dp.$$
(45)

Интегрирование по dp дает $\delta(2y-2z)$. После интегрирования по dz получаем следующее выражение:

$$\int \psi_m(x+y)\psi_n^*(x-y)x^2\psi_n^*(x+y)\psi_n(x-y)dydx,$$
(46)

Делая замену u=x+y
иv=x-y,получим

$$\int \psi_{m}(u)\psi_{n}^{*}(v)(u+v)^{2}\psi_{n}^{*}(u)\psi_{n}(v)dudv =$$

$$= \frac{1}{8}\int \psi_{m}(u)u^{2}\psi_{n}^{*}(u)du + \frac{1}{8}\int \psi_{n}^{*}(v)v^{2}\psi_{n}(v)dv +$$

$$+ \frac{1}{4}\int \psi_{m}(u)u\psi_{n}^{*}(u)du \int \psi_{n}^{*}(v)v\psi_{n}(v)dv =$$

$$= \frac{1}{8}(u^{2})_{mn}^{*} + \frac{1}{8}(v^{2})_{mn} + \frac{1}{4}u_{mn}^{*}v_{mn} = \frac{1}{4}\sum_{l}x_{ml}x_{ln} + \frac{1}{4}x_{mn}x_{mn}.$$
(47)

Получили такую же структуру для T_x , что и в (38). Если учесть двойку перед x^2 в (43), то должен получается правильный коэффициент.

Аналогичные вычисления нужно проделать для слагаемого с p^2 в (43). Из исключением того, что функция Вигнера выражается через импульсное представление. Кроме того, нужно учитывать, что матрица для импульса, в отличие от матрицы для координаты, комплексная. Этот факт объясняет асимметрию знаков координатной и импульсной части (38).

Таким образом, правильная формула для связи матриц перехода графов в различных представлениях должна имеет вид

$$(T^{L})_{mn} = \frac{1}{2} \left((T^{H}_{x})_{mn} (T^{H}_{x})^{*}_{mn} + (T^{H}_{p})_{mn} (T^{H}_{p})^{*}_{mn} \right) + \frac{1}{4} \left((T^{H}_{x})_{ml} (T^{H}_{x})_{ln} + (T^{H}_{x})^{*}_{ml} (T^{H}_{x})^{*}_{ln} + (T^{H}_{p})_{ml} (T^{H}_{p})_{ln} + (T^{H}_{p})^{*}_{ml} (T^{H}_{p})^{*}_{ln} \right).$$

$$(48)$$

3.3 Вид графа Лагерра

Используя теоремы из статьи [10], определяется вид матрицы связности для графа Лагерра:

$$\mathcal{B} = \begin{pmatrix} 1I & D_1 & 0 & 0 & \dots \\ D_1^T & 3I & D_2 & 0 & \dots \\ 0 & D_2^T & 7I & D_3 & \dots \\ 0 & 0 & D_3^T & 9I & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix},$$
(49)

где D_i – матрица $n_i^2 \times n_{i+1}^2$, имеющая аналогичную структуру матрицам C_i . Характеристический полином матрицы связности имеет вид

$$\det(\lambda I - \mathcal{B}) = L_k(\lambda) \prod_i L_i^{n_i^2 - n_{i+1}^2}(\lambda).$$
(50)

Из вида (49) можно установить, что число вершин на уровне становится квадратично больше чем в эрмитовом графе, появляется петли на каждой вершине, их число соответствует числу, расположенному на главной диагонали матрицы (37).

3.4 Счет путей для графа Лагерра

Зная структуру графа, соответствующего полиномам Лагерра, можно найти статистическую сумму. Начиная движение из корня графа и использовав матрицу перехода (37), получим следующие значения для числа путей:

$$\begin{cases} Z_{N=0} = \delta_{k,0} \\ Z_{N+1}(k) = (2K+1)Z_N(k) + Z_N(k+1) \\ Z_{N+1}(k) = (K-k)^2 Z_N(k-1) + (2(K-k)+1)Z_N(k) + Z_N(k+1) \\ Z_{N+1}(k) = (K-k)^2 Z_N(k-1) + (2(K-k)+1)Z_N(k) \\ k = K-1 \end{cases}$$
(51)

Воспользовавшись преобразованием (25) для числа путей графа Лагерра (51) получаем следующую систему уравнений:

$$\begin{cases} (s^{-1} - (2(K-k) + 1))\mathcal{Z}^{L}(s,k) = (K-k)^{2}\mathcal{Z}^{L}(s,k-1) + \mathcal{Z}^{L}(s,k+1) & \text{для } 1 \le k \le K-2, \\ (s^{-1} - 1)\mathcal{Z}^{L}(s,K-1) = \mathcal{Z}^{L}(s,K-2). \end{cases}$$

$$(52)$$

Отсюда можно найти каноническую статистическую сумму $\mathcal{Z}^L(s,k=0) = \mathcal{Z}^L_K(s)$ для графа Лагерра:

$$\mathcal{Z}_{K}^{L}(s) = \frac{L_{K-1}(s^{-1})}{sL_{K}(s^{-1})}.$$
(53)

Это позволяет переписать соотношение (50) в виде

$$\det(\lambda I - \mathcal{B}) = \lambda^N \prod_k \frac{1}{\mathcal{Z}_k^L(\lambda^{-1})^{n_k^2}}.$$
(54)

В случае представления Вигнера обратный вес элементарного шага по графу равен действию $s^{-1} = I = 2(x^2 + p^2)$ в переменных действие-угол (I, ϕ) .

4 Дополнительные физические модели

В данном разделе рассматриваются другие физические модели, для которых можно полностью или частично привести в соответствие дерево, с помощью ортогональных полиномов.

Полезно будет расширить матрицу перехода на случай обобщенных полиномов Лагерра, которые встречаются, например, при решении волнового уравнения на радиальную часть для атома водорода.

$$\hat{T}_{\alpha}^{L} = \begin{pmatrix} 1 & 1 & 0 & 0 & \dots & 0 \\ 1 & 3 & 1 & 0 & \dots & 0 \\ 0 & 4 & 5 & 1 & \dots & 0 \\ 0 & 0 & 9 & 7 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & p_{n-2} + p_{n-1} \end{pmatrix} + \begin{pmatrix} \alpha & 0 & 0 & 0 & \dots & 0 \\ \alpha & \alpha & 0 & 0 & \dots & 0 \\ 0 & 2\alpha & \alpha & 0 & \dots & 0 \\ 0 & 0 & 3\alpha & \alpha & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & \alpha \end{pmatrix},$$
(55)

Характеристический полином имеет вид

$$L_n^{\alpha}(\lambda) = \frac{1}{n!} \det(\hat{T}_{\alpha}^L - \lambda \hat{I}).$$
(56)

Следующие два графа (рис. 2), в отличие от дерева Эрмита и графа Лагерра, могут быть бесконечным.

Вначале рассмотрим граф, представляющий бесконечную линию (рис. 2a)). Корень может быть выбран в произвольном узле. Матрица перехода такого графа

$$T = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots \\ 2 & 0 & 1 & 0 & \dots \\ 0 & 1 & 0 & 1 & \dots \\ 0 & 0 & 1 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$
(57)

Спектр $P_n = \det_{n \times n} (T - \lambda I)$ такого графа генерирует отношения

$$P_{1} = -\lambda = 2\left(\frac{-\lambda}{2}\right) = 2x = 2T_{1},$$

$$P_{2} = \lambda^{2} - 2 = 2\left(2\frac{\lambda^{2}}{4} - 1\right) = 2(2x^{2} - 1) = 2T_{2},$$

$$P_{3} = -\lambda P_{2} - P_{1} = -\lambda^{3} + 3\lambda = 2\left(4\left(\frac{-\lambda}{2}\right)^{3} - 3\left(\frac{-\lambda}{2}\right)\right) = 2(4x^{3} - 3x) = 2T_{3}, \dots$$

$$P_{n} = 2T_{n},$$
(58)

где T_n - полиномы Чебышева первого рода. Полиномы Чебышего первого рода появляются при решение уравнения следующего вида

$$(1 - x2)y'' - xy' + n2y = 0.$$
(59)

Его можно переписать в виде

$$(1-x^2)^{1/2}\frac{d}{dx}\left((1-x^2)^{1/2}\frac{dy}{dx}\right) + n^2y = 0.$$
(60)

Сделав замену $x = \cos \theta$, получается уравнение вращения в плоскости:

$$\frac{d^2y}{d\theta^2} + n^2y = 0. ag{61}$$

Рис. 2: Вид деревьев, дающих полиномы Чебышева: а) первого рода, б) второго рода (параметр a = 3 из (62)).

Последний интересующий нас граф имеет матрицу перехода, где на боковой диагонали одинаковое число разветвлений (рис. 26)). Валентность всех узлов кроме корня будет одинакова. Матрица перехода будет иметь вид

$$U = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots \\ a & 0 & 1 & 0 & \dots \\ 0 & a & 0 & 1 & \dots \\ 0 & 0 & a & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$
(62)

Спектральный определить $P_n = \det_{n \times n} (U - \lambda I)$ дает рекуррентное отношение:

$$P_{1} = -\lambda = 2\sqrt{a}\left(\frac{-\lambda}{2\sqrt{a}}\right) = \sqrt{a}(2x) = a^{1/2}U_{1},$$

$$P_{2} = \lambda^{2} - a = a\left(4\left(\frac{\lambda^{2}}{4a}\right) - 1\right) = a(4x^{2} - 1) = aU_{2},$$

$$P_{3} = -\lambda P_{2} - aP_{1} = a^{3/2}U_{3},$$
(63)

$$\dots$$
$$P_n = -\lambda P_{n-1} - aP_{n-2} = a^{n/2}U_n.$$

Спектр данного графа дает полиномы Чебышева второго рода U_n . Они являются решением следующего дифференциального уравнения:

$$(1 - x2)y'' - 3xy' + n(n+2)y = 0.$$
(64)

Его можно переписать в следующей форме:

$$\frac{1}{(1-x^2)^{1/2}}\frac{d}{dx}\left((1-x^2)^{3/2}\frac{dy}{dx}\right) + n(n+2)y = 0.$$
(65)

Если сделать замену $x = \cos \theta$, то получим

$$\frac{1}{\sin^2\theta} \frac{d}{d\theta} \left(\sin^2\theta \frac{dy}{d\theta} \right) + n(n+2)y = 0.$$
(66)

Слагаемое с производной эквивалентно слагаемому, у оператора Лапласа для угла, входящего в параметризацию всех координат, в четырехмерии.

Заключение

В результате проделанной работы было многосторонне исследована одна из простейшим систем, модель квантового гармонического осциллятора, для которой можно явно описать связь между волновой функцией и суммированием по графам. Определены виды дерева Эрмита и графа Лагерра, что позволяет описать пути в пространстве Гильберта для координатного преставления и представления Вигнера. Найдена каноническая статическая сумма для графа Лагерра, а также ее связь со спектром графа. В дополнение найдены матрицы перехода, связанные различными ортогональными полиномами, встречающимися в физике.

Список литературы

- B.L. Altshuler, Y. Gefen, A. Kamenev, L.S. Levitov, Quasiparticle Lifetime in a Finite System: A Nonperturbative Approach, Phys. Rev. Lett. 78, 2803 (1997) [arXiv:condmat/9609132].
- [2] D.M. Basko, I.L. Aleiner, B.L. Altshuler, Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states, Annals of Physics **321**, 1126 (2006) [arXiv:cond-mat/0506617].
- [3] D. Krefl, Non-perturbative quantum geometry, Journal of High Energy Physics 2014, 84 (2014) [arXiv:1311.0584].
- [4] D. Krefl, Non-perturbative quantum geometry II, Journal of High Energy Physics 2014, 118 (2014) [arXiv:1410.7116].
- [5] P. Dorey, R. Tateo, Anharmonic oscillators, the thermodynamic Bethe ansatz and nonlinear integral equations, Journal of Physics A: Mathematical and General 32, 38 (1999) [arXiv:hep-th/9812211].
- [6] V.V. Bazhanov, S.L. Lukyanov, A.B. Zamolodchikov, Spectral Determinants for Schrödinger Equation and Q-Operators of Conformal Field Theory, Journal of Statistical Physics 102, 567 (2001) [arXiv:hep-th/9812247].
- [7] M. Aganagic, M. C. N. Cheng, R. Dijkgraaf, D. Krefl, C. Vafa Quantum Geometry of Refined Topological Strings, Journal of High Energy Physics 1211, 019 (2012) [arXiv:1105.0630].
- [8] I. Dumitriu, A. Edelman, Matrix models for beta ensembles, Journal of Mathematical Physics 43, 5830 (2002) [arXiv:math-ph/0206043].
- S.K. Nechaev, M.V. Tamm, O.V. Valba, Path counting on simple graphs: from escape to localization, Journal of Statistical Mechanics: Theory and Experiment 2017, 053301 (2017) [arXiv:1611.08880].
- [10] O. Rojo, R. Soto, The spectra of the adjacency matrix and Laplacian matrix for some balanced trees, Linear algebra and its applications 403, 97 (2005),
- [11] A.S. Gorsky, S.K. Nechaev, A.F. Valov, On statistical models on super trees, JHEP 2018, 123 (2018) [arXiv:1801.03067].

- [12] А. М. Переломов, Обобщенные когерентные состояния и некоторые их применения, УФН 123, 23 (1977).
- [13] L. Susskind, Three Lectures on Complexity and Black Holes, (2018) [arXiv:1810.11563].
- [14] T.L. Curtright, C.K. Zachos, Quantum Mechanics in Phase Space, Asia Pacific Physics Newsletter 01, 37 (2012) [arXiv:1104.5269v2].