Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)» Физтех-школа физики и исследований им. Ландау Кафедра теоретической астрофизики и квантовой теории поля

Направление подготовки/специальность: 03.04.01 Прикладные математика и физика

(магистратура)

Направленность (профиль) подготовки: 03.04.01 Проблемы теоретической физики

Сигма-модель на флаге $T\bar{T}$ -деформации YM и голография

(магистерская диссертация)

Студент: Павшинкин Дмитрий Владимирович

Научный руководитель: д.ф.-м.н. Горский Александр Сергеевич

Содержание

1	Введение	3
2	Двумерная теория Янга-Миллса с $Tar{T}$ -деформацией	4
	2.1 Статсумма $T\bar{T}$ -YM на цилиндре	4
	2.2 Коллективное описание	5
	2.3 Фазовый переход на сфере и энтропия	7
	2.4 Седловое распределение для геометрии диска	8
	2.5 Обсуждение результатов	10
3	Сигма-модель на пространстве флагов	11
	3.1 Эффективное действие	11
	3.2 Уравнения щели	13
	3.3 Фазовая структура	13
	3.4 <i>L</i> -зависимость	16
	3.5 Заключение	17
4	Appendix 4.1 Collective description	17 17
	4.2 Derivation of L -dependence	20

1 Введение

Теории поля в 1+1 измерении являются незаменимым интерументом теоретических исследований. Зачастую допускают точное решение, при этом демонстрируют новые явления и предсказательную силу в отношени высокоразмерных теорий. Многое удается сказать о теории, изучив ее фазовую структуру. В данном дипломе мы интересовались изучением фазовой структуры $T\bar{T}$ -деформированного Янга-Миллсса и сигма-модели на мировой поверхности дефекта общего вида (см. ниже) и того, как она зависит от геометрии и граничных условий (ГУ).

Примечательный свойством двумерного YM является фазовый переход 3 рода Дагласа-Казакова, найденный в [1] на сфере. Статсумма теории имеет конечный радиус сходимости по площади сферы A_{cr} , который разделяет фазу с малой константой связи от сильносвязанного струнного режима при большой площади. При этом, со стороны фазы малых A, переход вызван растущим вкладом инстантонов. Аналогичный переход был найден для статсуммы на диске и цилиндре [2]. В таком случае критическая площадь сильно зависит от ГУ, задаваемых вильсоновской петлей. С другой стороны, в последнее время наблюдаетя большой интерес к новой интегрируемой деформации 2d теорий, полученной Замолодчиковым в [3]. Она индуцируется иррелевантным оператором $T\bar{T} = -\pi^2 det T_{\mu\nu}$, при этом S-матрица и спектр конечной теории однозначно восстанавливаются по данным начальной [4, 5]. Более того, была дана стройная голографическая картина такой деформации. $T\bar{T}$ - CFT_2 с одним знаком деформации соответсвует КТП на Дирихле стенке в глубине балка на фоне ВТZ черной дыры, и спектр энергий ограничен сверху [6]. С другим знаком теория становится нелокальной, и наблюдается характерный рост плотности числа состояний Хагедорна [7]. В силу того, что YM в двумерии является (квази)топологической теорией, на гамильтоновом языке $T\bar{T}$ возмущение принимает удивительно простой вид [8]. В результате, аналог перехода ДК был найден в $T\bar{T}$ -YM на S^2 [9]. Деформация сохраняет род фазового перехода и его инстантонную интерпретацию, однако критическая площадь нетривально перенормируется $A \to Ab_{\infty}(A)$. Мы обобщаем эти результаты для геометрии цилиндра и диска. Также показываем наличие температуры Хагедорна в данной теории и приводим идеи поиска подобного фазового перехода в теорях с гравитацией.

Во второй части диплома изучаются однородные решения несуперсимметричных двумерных нелинейных сигма-моделей (NLSM) с таргет-простраствами комплексным грассманианом $Gr(N,2) = SU(N)/S(U(N-2) \times U(2))$ ([22]) и флагом $F(N,2,1) = SU(N)/S(U(N-2) \times U(2))$ $U(1) \times U(1)$) ([23]) на конечном интервале L [24, 25]. Данные теории асимптотически свобоодны и обладают размерной трансмутацией [26, 27]. Будучи прямым обобщением \mathbb{CP}^{N-1} . F(N, 2, 1) и Gr(N, 2) NLSMs являются эффективными теориями, описывающими ориентационные модули на мировой поверхности неабелевых струн [31, 32]. Поэтому соответсвующие теории на конечном интервале определяют составные k-струны, натянутые между доменными стенками. Сигма-модели на флаге также появляются в низко-энергетиеском описании антиферромагнитных спиновых цепочек [33, 34, 35]. Мы показываем, что модель на флаге допускает однородное решение в случае смешаннах Дирихле-Нейман (DN) ГУ только для достаточно больших L и испытывает фазовый переход из фазы с частично нарушенной до U(1) калибровочной симметрией в симметричную фазу $U(1) \times U(1)$ для бо́льших L. C другой стороны, грассмманова сигма-модель имеет изолированную фазу с одним массивным и одним безмассовым полями с ненулевыми вакуумными средними, нарушающими калибровочную U(2). Эта фаза живет на интервале L, ограниченном сверху, и с ГУ типа Робина. Мы также исследу зависимость полной энергии от длины интервала и обнаруживаем линейный вклад струны во всех фазах.

2 Двумерная теория Янга-Миллса с *TT*-деформацией

В 2.1 мы напоминаем, как TT деформирует статсумму YM на цилиндре. В 2.2 переходим к коллективному описанию через плотность собственных значений голономии на границах. В пункте 2.3 воспроизводится данным способом результат для сферы [9] и обсуждается асимптотическая плотность числа состояний для разных знаков деформации. В 2.4 приводится способ пертурбативного вычисления критичекой площади для диска. Дальнейшее развитие результатов обсуждается в 2.5.

2.1 Статсумма $T\bar{T}$ -YM на цилиндре

Рассмотрим двумерный YM с калибровочной группой SU(N) $S = \frac{1}{2g_{YM}^2} \int d^2x tr F^2$. При этом единственная ненулевая компонента F_{01} . В калибровке $A_0 = 0$ канонический импульс и плотность гамильтониана имеют вид

$$\Pi^1 = \frac{\partial \mathcal{L}}{\partial (\partial_0 A_1)} = -\frac{1}{g_{YM}^2} \partial_0 A_1, \quad \Pi^0 = 0, \quad \mathcal{H} = -\frac{g_{YM}^2}{2} tr(\Pi^1)^2$$

Посадим теорию на цилиндр с *L*-периодческой пространственной координатой и с помощью остаточной калибровочной инвариантности положим $A_1^a = const$. Тогда волновая функция системы зависит только от вильсоновских петель $U = P \exp \int_0^L A_1 dx$ с точностью до класса сопряженности и потому раскладывается по характерам. Действуя гамильтонианом $H = \frac{g_{YM}^2}{2} \int_0^L \frac{\delta}{\delta A_1^a} \frac{\delta}{\delta A_1^a}$ на $\chi_R(U) = tr_R U$, получаем $H = \frac{g_{YM}^2}{2} LC_2(R)$ (см. [10] для обзора). Статсумма на цилиндре дается следующей амплитудой перехода

$$Z_N(U_1, U_2|A) = \langle U_1|e^{-TH}|U_2\rangle = \sum_R \chi_R(U_1)\chi_R(U_2^{\dagger})e^{-\frac{g_{YM}^2}{2}AC_2(R)}$$

где А-площадь цилиндра, U_1 и U_2 -голономии на его границах, и в случае $U_1 = U_2 = \delta(0)$ переходит в статсумму на сфере.

Обратимся теперь к деформированной теории. $T\bar{T}$ поток задается следующим уравнением в Евклиде [8]

$$\partial_{\tau} \mathcal{L}(\tau) = det T_{\mu\nu}(\tau), \quad T\bar{T}(\tau) = -\pi^2 det T_{\mu\nu}(\tau)$$

где $T_{\mu\nu}(\tau)$ есть тензор энергии-импульса деформированной теории. В случае 2d-YM верно $detT_{\mu\nu} = -T_{00}^2 = -\mathcal{H}^2$, откуда следует выражение для деформированной плотности гамильтониана

$$\mathcal{H}_{\tau} = \frac{\mathcal{H}_0}{1 - \tau \mathcal{H}_0}$$

В итоге статсумма деформированного YM на цилиндре имеет вид

$$Z_N(U_1, U_2|A) = \sum_R \chi_R(U_1)\chi_R(U_2^{\dagger}) \exp \frac{\frac{A}{2N}C_2(R)}{1 - \frac{\tau}{N^3}C_2(R)}$$

где мы использовал
и $g_{YM}^2 N = \lambda = 1$ и перескалировали $\tau.$ Характеры в представлени
иRимеют вид

$$\chi_R(U) = \frac{\det \left\| e^{il_j\theta_k} \right\|}{\prod\limits_{s < r} (e^{i\theta_s} - e^{i\theta_r})}$$
(1)

где $\theta_k, k = 1, ..., N$ являются собственными значениями матрицы U. Выражение для квадратичного Казимира

$$C_2(R) = \sum_{i=1}^{N} \left(l_i - \frac{N-1}{2} \right)^2 - \frac{N}{12} (N^2 - 1)$$
(2)

Определяя новые переменные $y_k = \frac{1}{N}(l_k - \frac{N-1}{2})$ и используя уравнения (1),(2), получаем

$$Z_{N}(U_{1}, U_{2}|A, \tau) = \frac{1}{N!} \frac{1}{2^{N(N-1)}} \sum_{y_{k} \in \{\pm \frac{1}{N}, \pm \frac{2}{N}, ...\}} \frac{\det \left\| e^{iNy_{a}\theta_{b}^{(1)}} \right\| \det \left\| e^{iNy_{c}\theta_{d}^{(2)}} \right\|}{\prod_{s < r} \left[\sin \frac{\theta_{s}^{(1)} - \theta_{r}^{(1)}}{2} \sin \frac{\theta_{s}^{(2)} - \theta_{r}^{(2)}}{2} \right]} \times \exp \left[-\frac{A}{2} N^{2} \sum_{j=0}^{\infty} \tau^{j} \left(\frac{1}{N} \sum_{k=1}^{N} y_{k}^{2} - \frac{1}{12} \right)^{j+1} \right]$$
(3)

2.2 Коллективное описание

Статсумма 2d YM представима в виде бесконечной суммы по неприводимым представлениям, однако в пределе $N \to \infty$ доминирует одно, и все наблюдаемые выражаются через переменные l_i на диаграмме Юнга. Само наличие фазового перехода следует из дискретности индексов l_i . Однако, вместо того, чтобы искать седловые точки эффективного действия, удобно перейти к коллективному описанию через плотоности распределений с.з. $\sigma_1(\theta)$ и $\sigma_2(\theta)$ на границах цилиндра, хорошо определенные в пределе $N \to \infty$. Гросс и Матыцин в [2] описали процесс эволюции одномерной жидкости с отрицательным давлением и плотностью $\sigma_*(t,\theta)$ с ГУ $\sigma_*(0,\theta) = \sigma_1(\theta)$ и $\sigma_*(A,\theta) = \sigma_2(\theta)$. При этом седловое распределение ρ_Y на диаграмме Юнга связана с минимальной плотностью данной жидкости, $\sigma_0(\theta)$, формулой дуальности $\pi \rho_Y(-\pi \sigma_0(\theta)) = \theta$. Построим такое описание для $T\bar{T}$ -YM.

Можно убедиться, что деформированная статсумма (3) удовлетворяет следующему уравнению

$$2\frac{\partial Z_N}{\partial A} = \frac{N^2}{D(\theta^{(1)})} \sum_{j=0}^{\infty} (-1)^j \tau^j \left(\frac{1}{12} + \frac{1}{N^3} \sum_{k=1}^N \frac{\partial^2}{\partial \theta_k^2}\right)^{j+1} \left[D(\theta^{(1)}) Z_N\right]$$

где $D(\theta^{(1)}) = \prod_{s < r} \sin \frac{\theta_s - \theta_r}{2}$. Удобно перейти к

$$\tilde{Z}_N = Z_N e^{-\frac{AN^2}{24(1+\tau/12)}} \tag{4}$$

Для которой в правой части получаем сумму по степеням $\frac{1}{N^3}$

$$2\frac{\partial \tilde{Z}_N}{\partial A} = \frac{N^2}{D(\theta^{(1)})} \left[\left(1 - 2\left(\frac{\tau}{12}\right) + 3\left(\frac{\tau}{12}\right)^2 + ...\right) \left(\frac{1}{N^3} \sum_{k=1}^N \frac{\partial^2}{\partial \theta_k^2}\right) - \tau \left(1 - 3\left(\frac{\tau}{12}\right) + 6\left(\frac{\tau}{12}\right)^2 + ...\right) \left(\frac{1}{N^3} \sum_{k=1}^N \frac{\partial^2}{\partial \theta_k^2}\right)^2 + \tau^2 \left(1 - 4\left(\frac{\tau}{12}\right) + 10\left(\frac{\tau}{12}\right)^2 + ...\right) \left(\frac{1}{N^3} \sum_{k=1}^N \frac{\partial^2}{\partial \theta_k^2}\right)^3 + ...\right] \left[D(\theta^{(1)})\tilde{Z}_N\right]$$

или

$$2\frac{\partial \tilde{Z}_N}{\partial A} = \frac{N^2}{D(\theta^{(1)})} \sum_{j=0}^{\infty} \frac{(-1)^j \tau^j}{(1+\frac{\tau}{12})^{j+2}} \left(\frac{1}{N^3} \sum_{k=1}^N \frac{\partial^2}{\partial \theta_k^2}\right)^{j+1} \left[D(\theta^{(1)})\tilde{Z}_N\right]$$

Введем свободную энергию $\tilde{Z}_N = e^{N^2 \tilde{\mathcal{F}}_N}$, которая имеет хорошо определенный предел $\tilde{\mathcal{F}} = \lim_{N \to \infty} \tilde{\mathcal{F}}_N$. В результате громоздкой процедуры замены переменных θ_i на $\sigma(\theta)$ (see Appendix 1) получаем выражение для $\tilde{\mathcal{F}}$

$$\tilde{\mathcal{F}}[\sigma_1(\theta), \sigma_2(\theta) | A, \tau] = S[\sigma_1(\theta), \sigma_2(\theta) | A, \tau] - \frac{1}{2} \int \sigma_1(\theta) \sigma_1(\phi) \log \left| \sin \frac{\theta - \phi}{2} \right| d\theta d\phi - \frac{1}{2} \int \sigma_2(\theta) \sigma_2(\phi) \log \left| \sin \frac{\theta - \phi}{2} \right| d\theta d\phi$$

где функционал S удовлетворяет уравнению

$$\frac{\partial S}{\partial A} = \frac{H}{(1 + \frac{\tau}{12})(1 + \frac{\tau}{12} + 2\tau H)}$$
(5)
$$H[\sigma_1(\theta), \Pi(\theta)] = \frac{1}{2} \int_0^{2\pi} \sigma_1(\theta) \left[\left(\frac{\partial \Pi}{\partial \theta} \right)^2 - \frac{\pi^2}{3} \sigma_1^2(\theta) \right] d\theta, \quad \Pi(\theta) = \delta S / \delta \sigma_1(\theta).$$

Обозначим правую часть уравнения (5) за \tilde{H} . Тогда имеем уравнение Гамильтона-Якоби с гамильтонианом \tilde{H} и действием S вдоль потока за время A. Уравнения Гамильтона в нашем случае

$$\begin{cases} \frac{\partial \sigma(\theta)}{\partial t} = \frac{\delta \tilde{H}(\sigma,\Pi)}{\delta \Pi(\theta)} = \alpha \frac{\delta H(\sigma,\Pi)}{\delta \Pi(\theta)}, \\ \frac{\partial \Pi(\theta)}{\partial t} = -\frac{\delta \tilde{H}(\sigma,\Pi)}{\delta \sigma(\theta)} = -\alpha \frac{\delta H(\sigma,\Pi)}{\delta \sigma(\theta)} \end{cases} \qquad \alpha = \frac{\partial \tilde{H}}{\partial H} = \frac{1}{(1 + \tau(\frac{1}{12} + 2H))^2}$$

Из которых мы сразу получаем систему уравнений Эйлера

$$\begin{cases} \frac{\partial \sigma}{\partial t} + \alpha \frac{\partial (\sigma v)}{\partial \theta} = 0\\ \frac{\partial v}{\partial t} + \alpha v \frac{\partial v}{\partial \theta} = \alpha \frac{\partial (\pi^2 \sigma^2/2)}{\partial \theta} & \text{c } \Gamma \text{V}: \\ v = \frac{\partial \Pi(\theta)}{\partial \theta} \end{cases} \quad c \quad \Gamma \text{V}: \quad \begin{cases} \sigma(\theta)|_{t=0} = \sigma_1(\theta)\\ \sigma(\theta)|_{t=A} = \sigma_2(\theta) \end{cases}$$
(6)

Вводя новую функцию $f(t,\theta) = v(t,\theta) + i\pi\sigma(t,\theta)$, можно свести уравнения коллективной теории к комплексному уравнению Хопфа¹

$$\frac{\partial f}{\partial t} + \alpha f \frac{\partial f}{\partial \theta} = 0 \tag{7}$$

H является интегралом движения. Поэтому α не зависит от времени, а только перенормирует его в (7). Вид решение данного уравнения может быть получен методом характеристик

$$f(t,\theta) = f_0(\theta - \alpha t f(\theta, t)), \quad f_0(\theta) = f(0,\theta)$$

¹Уравнение Хопфа (Бюргерса) встречается здесь в двух разных контекстах – задает $T\bar{T}$ поток энергии, а также поток одномерной жидкости вдоль цилиндра.

2.3 Фазовый переход на сфере и энтропия

Данную задачу удается решить для сферы, когда накладываются следующие ГУ $\sigma_1(\theta) = \sigma_2(\theta) = \delta(\theta)$. Как и в случае недеформированного YM, в режиме слабой связи $A < A_{cr}$ будем предполагать вигнеровское распределение

$$\sigma_*(t,\theta) = \frac{2}{\pi r^2(t)} \sqrt{r^2(t) - \theta^2}; \quad |\theta| < r$$
(8)

После подстановки (8) в (6) получается

$$v(t,\theta) = \gamma(t)\theta, \quad \dot{r} = \alpha\gamma(t), \quad \dot{\gamma}(t) = -\alpha\left(\gamma(t)^2 + \frac{4}{r^2(t)}\right)$$

откда следует выражение для гамильтони
ана $H=\frac{\gamma^2 r^2}{8}-\frac{1}{2r^2}$ и системы

$$\begin{cases} \dot{r} = \frac{\gamma r}{1 + \tau(\frac{1}{12} + \frac{\gamma^2 r^2}{4} - \frac{1}{r^2})}, \\ \dot{\gamma} = -\frac{\gamma^2 + \frac{4}{r^4}}{1 + \tau(\frac{1}{12} + \frac{\gamma^2 r^2}{4} - \frac{1}{r^2})} \end{cases} \qquad r(0) = r(A) = 0 \end{cases}$$

которая имеет одно согласующееся с недеформированным пределом решение

$$r(t) = 2\sqrt{\frac{t(A-t)}{A}b_{\infty}}, \quad \text{где} \quad b_{\infty} = \frac{1 + \frac{2\tau}{A}(1 + \frac{\tau}{12}) + \sqrt{1 + \frac{4\tau}{A}(1 + \frac{\tau}{12})}}{2(1 + \frac{\tau}{12})^2}.$$

Фазовый переход происходит, когда носитель $\sigma_*(t,\theta)$ занимает весь интервал $(-\pi,\pi)$. r(t) достигает максимума при t = A/2: $r(A/2) = \sqrt{Ab_{\infty}}$. Отсюда следует условие на критическую площадь $A_{cr}b_{\infty}(A_{cr}) = \pi^2$ и его решение $A_{cr} = \pi^2 \left[1 - \tau \left(\frac{1}{\pi^2} - \frac{1}{12}\right)\right]^2$. Таким образом, мы воспроизводим результат для S^2 , полученный в [9] путем вариации эффективного действия. Заметим, что это решение справедливо только в фазе со слабой связью. В сильной фазе седловой распределение описывается эллиптической кривой, и пока что, не удается решить коллективные уравнения даже для сферы.

Рассмотрим зависимость энергии основного состояния от параметра дефомации. На уравнениях движения $H = -\frac{1}{2Ab_{\infty}}$, поэтому для $\tilde{H} = \frac{H}{(1+\frac{\tau}{12})(1+\frac{\tau}{12}+2\tau H)}$ имеем

$$\widetilde{H} = \frac{1}{4\tau(1+\tau/12)} \left(1 - \sqrt{1 + \frac{4\tau(1+\tau/12)}{A}} \right)$$
(9)

Напомним, что до этого момента площадь цилиндра A имела роль времени. Восстановим длину компактной координаты L (A = LT). Тогда энергия основного состояния, $-\partial_L \mathcal{F}$, имеет вид²

$$E_0(L) = \frac{T}{4\tau(1+\tau/12)} \left(1 - \sqrt{1 + \frac{4\tau(1+\tau/12)}{LT}} \right) + \frac{T}{24(1+\tau/12)}$$

и представлена на рис. 1 для трех различных значений τ . Нулевому τ соответсвует обычная

 $^{^{2}}$ Второе слагаемое следует из уравнения (4).

энергия Казимира. В случае $\tau < 0$ имеется корневая сингулярность, ударная волна – хорошо известное решение уравнения Хопфа. Появляется минимальное значение L_* . Аналитическое продолжение в область $L < L_*$ будет выдавать комплексные значения энергии, что может означать потерю системой основного состояния. Для $\tau > 0$, напротив, доступна вся УФ-область. Асимптотическое поведение энтропии с энргией принципиально зависит от знака параметра деформации

$$S(E) \sim \begin{cases} E, & \tau < 0\\ E^{1/2}, & \tau = 0\\ E^{1/3}, & \tau > 0 \end{cases}$$

Рис. 1: Зависимость энергии основного состояния от от длины окружности L (T = 1). Красный $\tau = 10$, зеленый $\tau = 0$, синий $\tau = -2$. Максимальное значение L соответсвует фазовому переходу.

Характерное для большинства 2d теорий поведение Карди для энтропии связано с наличием неподвижной УФ точки. Включение иррелевантного $T\bar{T}$ (с $\tau < 0$) ожидаемо приводит к плотности состояний, растущей с энергией быстрее квадратного корня, и статсумма расходится при достаточно малом радиусе цилиндра. С другим знаком, наоборот, энтропия растет медленнее. Заметим, что в случае $T\bar{T}$ - CFT_2 (с $\tau > 0$) S(E) = const. Такое поведение может указывать на тесную связь данной деформации с гравитацией. Действительно, в [11] $T\bar{T}$ была явно сформулирована в виде интеграла по путям. В таком случае исходная КТП одевается гравитационной теорией, которая в плоском пространстве совпадает с гравитацией Джакива–Тейтельбойма (JT).

В заверешние отметим, что используя выражение для седловой плотности на диаграмме Юнга ρ_Y , полученной для сферы в [9], $\rho_Y(h) = \frac{Ab_\infty}{2\pi} \sqrt{\frac{4}{Ab_\infty} - h^2}$, можно убедиться в справедливости формулы дуальности $\pi \rho_Y(-\pi \sigma_0(\theta)) = \theta$, где $\sigma_0(\theta) = \sigma_*(\frac{A}{2}, \theta)$. В следующем разделе мы рассмотрим другой метод вычисления седловой плотности ρ_Y для YM на диске, полученный Казаковым в [12], с минимальной модификацией на случай $T\bar{T}$ -YM.

2.4 Седловое распределение для геометрии диска

Рассмотрим статсумму $T\bar{T}$ -YM на диске.

$$Z_N(U|A) = \sum_R d_R \chi_R(U) e^{-\frac{A}{2N}C_2(R)}$$

Идея состоит в том, чтобы выразить large-N асимптотику характеров через асимптотику интеграла Ициксона-Зюбера.

$$\chi_R(U) = I(h, i\theta)\Delta(h)\frac{\Delta(i\theta)}{\Delta(e^{i\theta})}, \quad I[h, \theta] = e^{N^2 F_0[\rho(h), \sigma(\theta)]}, \quad \Delta(h) = \prod_{i < j} (x_i - x_j).$$

Тогда действие теории в непрерывном пределе имеет вид

$$S[\rho,\sigma] = -\int du\rho(u) \int dv\rho(v) \log|u-v| - \frac{3}{2} + \frac{A}{2} \sum_{j=0}^{\infty} \tau^j \left[\int du\rho(u) u^2 - \frac{1}{12} \right]^{j+1} - F_0[\rho,\sigma]$$

Уравнение на седловое распределение

$$\mathcal{F} = Ah \sum_{j=0}^{\infty} (j+1)\tau^{j} \left[\int du \rho(u) u^{2} - \frac{1}{12} \right]^{j} - 2\mathcal{V}(h)$$
(10)

где введены $\mathcal{F} = \frac{\partial}{\partial h} \frac{\delta F_0[\rho,\sigma]}{\delta \rho}$ и $\mathcal{V} = \int \frac{du\rho(u)}{h-u}$. Используя свойства интеграла IZ в преледе больших N, сможно получить следующую формулу [12]

$$\Theta(\theta) = -\oint_{C} \frac{dh}{2\pi} \log(\theta - i\mathcal{F}(h) - iH(h))$$
(11)

связывающую резольвенты $H(h) = \int \frac{du\rho(u)}{h-u}$ и $\Theta(\theta) = \int \frac{du\sigma(u)}{\theta-u}$. Контур *C* обходит разрез H(h) против часовой. Подставим седловое \mathcal{F} из (10) в (11) и воспользуемся свойством $H^{\pm}(h) - 2\mathcal{V}(h) = -H^{\mp}(h)$, тогда

$$\Theta(\theta) = -\oint_C \frac{dh}{2\pi} \log(\theta - iA\mathcal{X}h + iH(h))$$

где обозначено $\mathcal{X} = \sum_{j=0}^{\infty} (j+1) \tau^j \Big[\int du \rho(u) u^2 - \frac{1}{12} \Big]^j$. Выполняя стандартную последовательность манипуляций, имеем

$$\Theta(\theta) = \frac{\theta}{A\mathcal{X}} - i\sum_{zeros} h(\theta)$$

вместе с условием на $h(\theta)$

$$\theta - iA\mathcal{X}h(\theta) + iH(h(\theta)) = 0 \tag{12}$$

В случае несингулярного $\sigma(\theta)$ можно ограничиться одним решением (12), тогда верно

$$i\mathcal{X}A\Theta(\theta(h)) = H(h)$$

откуда, последовательными приближениями по \mathcal{X} , можно вытащить седловое распределение ρ . Условие на критическую площадь имеет вид

$$(\mathcal{X}A)_{cr} = \pi(\Theta(\theta(0)))^{-1}$$

Особенно просто получить А_{cr} в случае полукругового распределения

$$A_{cr}^{d} = \frac{A_{cr}^{s}(1 + \sqrt{1 - r^{2}/\pi^{2}})}{2}$$

2.5 Обсуждение результатов

Мы увидели, что включение дефорамции с отрицательным τ приводит к росту плотности числа состояний Хагедорна, который можно объяснить следующим образом. Из уравнения (9) следует, что $T\bar{T}$ деформация YM, описывающего динамику свободных частиц на окружности, приводит к появлению струны с натяжением $1/|\tau|$, намотанной на цилиндр. В сингулярной точке, в спектре струны имеется безмассовая мода, термальный скаляр ([13]), которая становится тахионной в области $L < L_*$.

Полученные результаты также позволяют изучить фазовый переход, подобный ДК, в общих моделях с JT и калибровочной теорией. Так, в [14] рассматривался предел вблизи горизонта заряженной черной дыры, описываемый JT, свзанной с 2d YM. В частности, была показана эквивалентность JT+YM (ограниченной вкладом в функциональный интеррал поверхностей с топологией диска) шварцианной теории с частицей, движущейся во внутреннем пространстве. Не смотря на то, что геометрия не является плоской (AdS_2) , для специального выбора ГУ на дилатон и калибровочное поле статсумма имеет схожий вид с таковой для $T\bar{T}$ -YM. Тогда, из нашего результата 2.4 следует наличие фазового перехода в данной теории для определенных значений янг-миллсовской и дилатонной констант связи.

3 Сигма-модель на пространстве флагов

Задачей настоящего раздела является изучение фазовой структуры F(N, 2, 1) и Gr(N, 2)сигма-моделей в зависимости от длины интервала и ΓY на нем в пределе больших N. В пункте 3.1 мы строим лагранжиан для простейшей флаговой сигма-модели F(N, 2, 1). В общем случае, в конструкции имеется две разные константы связи. Поэтому появляются два независимых размерных параметра, Λ_1 и Λ_2 (e.g. $\Lambda_1 \geq \Lambda_2$). Таргет-пространство становится Gr(N, 2), если константы совпадают. Затем мы получаем эффективное действия, отинтегрировав все поля, кроме двух. Уравнения щели построены в секции 3.2. Секция 3.3 является главной частью раздела. Здесь исследуется фазовая структура теории. Для F(N, 2, 1) область значений $L > \Lambda_2^{-1}$ соответсвует ненарушенной $U(1)_A \times U(1)_B$ калибровочной симметрии. Для $\Lambda_2^{-1} > L > \Lambda_1^{-1}$ получаем фазу с $U(1)_A$ симметрией. Величина Λ_1^{-1} играет роль УФ обрезания (натяжения струны), поскольку для $L < \Lambda_1^{-1}$ решения уравнений щели отсутсвуют, и симметрия не может быть полностью нарушена. С другой стороны, когда константы связи совпадают, и F(N, 2, 1) становится Gr(N, 2), для специального выбора ГУ решение имеется только при $\Lambda_1^{-1} > L > 0$. Данная область соответсвует фазе с полностью нарушенной U(2) калибровочной симметрией. В секции 3.4 мы исследуем L-зависимость полной энергии и выясняем, что линейный вклад, соответсвующий натяжению сруны, имеется во всех фазах. Также мы анализируем люшеровский вклад, который появляется только в фазе с нарушенной калибровочной симметрией и сигнализирует о наличии безмассовой степени свободы на мировой поверхности струны [15, 37].

3.1 Эффективное действие

Следуя [26], рассмотрим лагранжиан пары взаимодействующих \mathbb{CP}^{N-1} моделей

$$L = \frac{1}{g_1^2} |D_{1\mu}\psi_1|^2 + \frac{1}{g_2^2} |D_{2\mu}\psi_2|^2 - i\frac{1}{\sqrt{g_1g_2}} C_\mu\psi_2^{\dagger}\partial^{\mu}\psi_1 - i\frac{1}{\sqrt{g_1g_2}} C_\mu^*\psi_1^{\dagger}\partial^{\mu}\psi_2 + \frac{1}{4} \left(\frac{g_1}{g_2} + \frac{g_2}{g_1}\right) C_\mu^*C^\mu$$
(13)

где ψ_1 and ψ_2 комплексные N-векторы такие, что $\psi_i^{\dagger}\psi_j = \delta_{ij}$ (i = 1, 2), и минимально связанные с абедевыми полями A_{μ} и B_{μ} через $D_{1\mu} = \partial_{\mu} - iA_{\mu}$ и $D_{2\mu} = \partial_{\mu} - iB_{\mu}$. Если константы связи для каждого комплексного пространства различны, получим многообразие флага. В тоже время грассманиану соотвествует случай $g_1 = g_2$. Отметим также, что наличие двух различных констант связи приводит к динамической генерации двух размерных параметров.

Удобно переписать лагранжиан в виде $N \times 2$ матрицы $Z_{i\alpha} = (\psi_{1\alpha}, \psi_{2\alpha}) \ (\alpha = 1, ..., N)$

$$L = Tr((D_{\mu}Z)^{\dagger}(D^{\mu}Z) - \lambda(Z^{\dagger}Z - R))$$
(14)

где мы ввели матрицу $R = \begin{pmatrix} r_1 & 0 \\ 0 & r_2 \end{pmatrix}$ с $r_1 = N/g_1^2$ и $r_2 = N/g_2^2$ и матрицу лагранжевых множителей $\lambda = \begin{pmatrix} \lambda_1 & \lambda_3 \\ \lambda_3^* & \lambda_2 \end{pmatrix}$, накладывающих условия $(\psi_{i\alpha})^{\dagger}\psi_{j\alpha} = \delta_{ij}r_j$. Ковариантная производная будет $D_{\mu}Z = \partial_{\mu}Z - Z\tilde{A}_{\mu}$ с $\tilde{A}_{\mu} = -i\begin{pmatrix} A_{\mu} & \frac{1}{2}C_{\mu} \\ \frac{1}{2}C_{\mu}^* & B_{\mu} \end{pmatrix}$. На классическом уровне калибровочные поля могут быть исключены посредством уравнений движения. Занулим их для дальнейшего удобства.

Принимая во внимание то, что λ преобразуется по присоединенному представлению ка-

либровочной группы U(2), можно видеть, что для $r_1 = r_2$ лагранжиан (14) инвариантен относительно U(2) преобразований. Наоборот, когда $r_1 \neq r_2$ локальная симметрия точно нарушена до $U(1)_A \times U(1)_B$. Как хорошо известно, линейная модель $G_{global} \times H_{local}$ калибровочно эквивалентна нелинейной сигма-модели, соответсвующей G/H (см. [38]). Таким образом мы получаем многообразия Gr(N, 2) и F(N, 2, 1).

Рассмотрим на мгновение стандартное колчанное представление GLSM (рис. 2). Имеется два динамических бифундаментальных поля u и Z. Однако, используя действие группы $U(1) \times U(2)$, мы можем привести вектор u к каноническому виду $(1,0)^{\intercal}$, оставля только одно динамическое поле Z, как было сделано выше. Ненулевое вакуумное значение u приводит к тому, что матрица R имеет два различных собсвенных значения, тем самым нарушая U(2)симметрию. Важно отметить, что u может иметь vev только для конечных L в силу теоремы Коулмана.

Рис. 2: Колчан простейшего флага F(N, 2, 1).

Вернемся к уравнению (14). Для того чтобы посчитать гауссов интеграл в статсумме удобно представить лагранжиан в виде $2N \times 2N$ матрицы

$$L = (\psi_1^{\dagger}, \psi_2^{\dagger})(M^T \otimes I) \left(\begin{array}{c} \psi_1\\ \psi_2 \end{array}\right) + r_1 \lambda_1 + r_2 \lambda_2$$

где введены $M = \begin{pmatrix} -\partial^2 + \lambda_1 & \lambda_3 \\ \lambda_3^* & -\partial^2 + \lambda_2 \end{pmatrix}$ и $I_{N \times N}$ единичная матрица. Интегрируя все поля кроме σ_1 и σ_2 (первые компоненты векторов ψ_1 и ψ_2 соответственно), которые затем приобретут ненулевые вакуумные значения, мы получаем эффективное действие

$$S_{eff} = 2NTr \log \begin{pmatrix} -\partial^2 + \lambda_1 & \lambda_3 \\ \lambda_3^* & -\partial^2 + \lambda_2 \end{pmatrix} + \int d^2x [(\partial_\mu \sigma_1)^2 + \lambda_1 (|\sigma_1|^2 - r_1) \\ + (\partial_\mu \sigma_2)^2 + \lambda_2 (|\sigma_2|^2 - r_2) + \lambda_3 \sigma_1^* \sigma_2 + \lambda_3^* \sigma_1 \sigma_2^*]$$
(15)

где для удобства сделана замена $N \to 2N+1$. Главное отличие между данным эффективным действием и аналогичным для \mathbb{CP}^{N-1} с двумя конденсатами (см. [39]) является наличие внедиагональных лагранжевых множителей λ_3 , λ_3^* , которые смешивают два сектора ψ_1 и ψ_2 . Как будет показано ниже, данное обстоятельство имеет определяющее значение для фазовой структуры модели.

Для того, чтобы вычислить статсумму в пределе больших N, необходимо найти седловые точки дейсвия. Мы будем рассматрива только независящие от времени решения, поскольку симметрия трансляций по времени остается ненарушенной.

3.2 Уравнения щели

Из уравнения (15) следует, что полная энергия системы является суммой энергии квантовых флуктуаций и энергии конденсатов σ_1 и σ_2 ([40])

$$E = 2N\sum_{n}\omega_{n} + \int_{0}^{L} dx [(\partial_{\mu}\sigma_{1})^{2} + \lambda_{1}(|\sigma_{1}|^{2} - r_{1}) + (\partial_{\mu}\sigma_{2})^{2} + \lambda_{2}(|\sigma_{2}|^{2} - r_{2}) + \lambda_{3}\sigma_{1}^{*}\sigma_{2} + \lambda_{3}^{*}\sigma_{1}\sigma_{2}^{*}]$$

где ω_n^2 есть собственные значения матрицы

$$\begin{pmatrix} -\partial_x^2 + \lambda_1 & \lambda_3 \\ \lambda_3^* & -\partial_x^2 + \lambda_2 \end{pmatrix} \begin{pmatrix} f_{1,n} \\ f_{2,n} \end{pmatrix} = \omega_n^2 \begin{pmatrix} f_{1,n} \\ f_{2,n} \end{pmatrix}$$
(16)

Вариация полной энергии по лагранжевым множителям дает следующие седовые уравнения

$$N\sum_{n} \frac{1}{\omega_{n}} \left(\begin{array}{cc} \frac{|f_{1,n}|^{2}}{\theta_{1}} & \frac{f_{1,n}f_{2,n}^{*}}{\theta_{2}} \\ \frac{f_{1,n}^{*}f_{2,n}}{\theta_{1}} & \frac{|f_{2,n}|^{2}}{\theta_{2}} \end{array} \right) + \left(\begin{array}{cc} |\sigma_{1}|^{2} & \sigma_{1}^{*}\sigma_{2} \\ \sigma_{1}\sigma_{2}^{*} & |\sigma_{2}|^{2} \end{array} \right) - \left(\begin{array}{cc} r_{1} & 0 \\ 0 & r_{2} \end{array} \right) = 0$$

где использована нормировка $\theta_1 = \int_0^L dx |f_{1,n}(x)|^2, \quad \theta_2 = \int_0^L dx |f_{2,n}(x)|^2, \quad \theta_1 + \theta_2 = 2$

Внедиагональные элементы комплексно сопряжены друг к другу, поэтому $\theta_1 = \theta_2 = 1$.

Вариация по полям σ_i приводит к уравнениям движения

$$\begin{pmatrix} -\partial_x^2 + \lambda_1 & \lambda_3 \\ \lambda_3^* & -\partial_x^2 + \lambda_2 \end{pmatrix} \begin{pmatrix} \sigma_1 \\ \sigma_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Ограничимся рассмотрением действительных однородных конденсатов, тогда уравнея приниматют такой вид

$$N\sum_{n} \frac{1}{\omega_{n}} \begin{pmatrix} f_{1,n}^{2} & f_{1,n}f_{2,n} \\ f_{1,n}f_{2,n} & f_{2,n}^{2} \end{pmatrix} + \begin{pmatrix} \sigma_{1}^{2} & \sigma_{1}\sigma_{2} \\ \sigma_{1}\sigma_{2} & \sigma_{2}^{2} \end{pmatrix} = \begin{pmatrix} r_{1} & 0 \\ 0 & r_{2} \end{pmatrix}$$
(17)

$$\begin{pmatrix} \lambda_1 & \lambda_3 \\ \lambda_3 & \lambda_2 \end{pmatrix} \begin{pmatrix} \sigma_1 \\ \sigma_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
(18)

Как будет показано в следующем разделе, поведение решений принципиально зависит от параметров r_1/r_2 , λ_3 и граничных условий.

3.3 Фазовая структура

Отметим прежде всего, что в случае $L \to \infty$ существует единственная фаза конфайнмента с размерными параметрами $m_i \equiv \Lambda_i = \Lambda_{uv} \exp(-2\pi/Ng_i^2)$ (i = 1, 2) и нулевыми вакуумными значениями полей ψ_i . Как обсуждалось в [27], для теории на прямой решение есть только при $\lambda_3 = 0$. Для теории на конечном интервале с $\lambda_3 = 0$ из (17) и (18) следует

$$N\sum_{n} \frac{f_{1,n}^2}{\omega_n} + \sigma_1^2 - r_1 = 0, \quad \lambda_1 \sigma_1 = 0$$
(19)

$$N\sum_{n} \frac{f_{2,n}^2}{\omega_n} + \sigma_2^2 - r_2 = 0, \quad \lambda_2 \sigma_2 = 0$$
$$\sigma_1 \sigma_2 = 0$$

где $r_i = \frac{2N}{\pi} \log(\Lambda_{uv}/\Lambda_i)$. В последнем уравнении использовали то, что $\sum_n \frac{f_{1,n}f_{2,n}}{\omega_n} = 0$ для диагонального оператора в (16). Наложим смешанные DN-ND ГУ:

$$\psi_{i\alpha}(0) = 0, \quad \partial_x \psi_{i\alpha}(L) = 0, \quad \text{if} \quad \alpha = 2, ..., N+1;$$
(20)

$$\partial_x \psi_{i\alpha}(0) = 0, \quad \psi_{i\alpha}(L) = 0, \quad \text{if} \quad \alpha = N+2, ..., 2N+1;$$
(21)

$$\partial_x \sigma_i(0) = \partial_x \sigma_i(L) \tag{22}$$

Тогда первые слагаемые в (19) и (20) имеют вид

$$\left(\frac{N}{2}\sum_{n}\frac{f_{i,n}^{2}}{\omega_{n}}\right)_{DN} + \left(\frac{N}{2}\sum_{n}\frac{f_{i,n}^{2}}{\omega_{n}}\right)_{ND}$$

Милехин показал [21], что уравнения (19) и (20) с условиями (20)-(22) имеют решения при любом L с фазовым переходом Хиггс-Кулон при $L_1 \approx 1/\Lambda_1$ и $L_2 \approx 1/\Lambda_2$ соответсвенно, что схематически отображено на фиг. 3. Однако, теперь, из-за дополнительного условия $\sigma_1 \sigma_2 = 0$, система будет иметь решение только на интервале $(L_1, +\infty)$. Для $L \in (L_1, L_2)$ имеется ненулевое безмассовое поле σ_2 , нарушающее калибровочную $U(1)_A \times U(1)_B$ до $U(1)_A$; $L > L_2$ соответствует симметричной (кулоновской) фазе. Отметим, что для $r_1 = r_2$ (грассманиан) верно $L_1 = L_2$, и имеется только кулоновская фаза.

Рис. 3: Схематическое изображение фазовой структуры. Система (19)-(20) имеет решение только при $L > L_1$.

Рассмотрим теперь случай $\lambda_3 = const \neq 0$. Первое, что можно сказать об этой фазе, это отсутсвие решения при $L \to \infty$, как отмечалось в начале этого раздела. Чтобы изучить данную модель на конечном интервале, диагонализуем оператор в (16)

$$\begin{pmatrix} -\partial_x^2 + \frac{\lambda_1 + \lambda_2 + \sqrt{(\lambda_1 - \lambda_2)^2 + 4\lambda_3^2}}{2} & 0\\ 0 & -\partial_x^2 + \frac{\lambda_1 + \lambda_2 - \sqrt{(\lambda_1 - \lambda_2)^2 + 4\lambda_3^2}}{2} \end{pmatrix} \begin{pmatrix} \tilde{f}_{1,n}\\ \tilde{f}_{2,n} \end{pmatrix} = \omega_n^2 \begin{pmatrix} \tilde{f}_{1,n}\\ \tilde{f}_{2,n} \end{pmatrix}$$

Вклад квантовых флуктуаций в полную энергию имеет вид

$$2N\bigg(\sum_{n}\omega_{1,n}+\sum_{k}\omega_{2,k}\bigg)$$

где $\omega_{1,n}^2$ и $\omega_{2,k}^2$ есть собственные значения задачи

$$\left(-\partial_x^2 + \frac{\lambda_1 + \lambda_2 + \sqrt{(\lambda_1 - \lambda_2)^2 + 4\lambda_3^2}}{2}\right)\tilde{f}_{1,n} = \omega_{1,n}^2\tilde{f}_{1,n}$$

$$\left(-\partial_x^2 + \frac{\lambda_1 + \lambda_2 - \sqrt{(\lambda_1 - \lambda_2)^2 + 4\lambda_3^2}}{2}\right)\tilde{f}_{2,k} = \omega_{2,k}^2\tilde{f}_{2,k}$$

После вариаци
и $\lambda_{1,2,3}, \sigma_{1,2}$ и некоторых преобразований получаем уравнения на седловую точку

$$N\sum_{n} \frac{f_{1,n}^{2}}{\omega_{1,n}} + N\sum_{k} \frac{f_{2,k}^{2}}{\omega_{2,k}} + \sigma_{1}^{2} + \sigma_{2}^{2} - r_{1} - r_{2} = 0$$

$$\frac{(\lambda_{1} - \lambda_{2})}{\lambda_{1} - \lambda_{2})^{2} + 4\lambda_{3}^{2}} \left(N\sum_{n} \frac{\tilde{f}_{1,n}^{2}}{2\omega_{1,n}} - N\sum_{k} \frac{\tilde{f}_{2,k}^{2}}{2\omega_{2,k}}\right) + \sigma_{1}^{2} - \sigma_{2}^{2} + r_{1} - r_{2} = 0$$
(23)

$$\frac{2\lambda_3}{\sqrt{(\lambda_1 - \lambda_2)^2 + 4\lambda_3^2}} \left(N\sum_n \frac{\tilde{f}_{1,n}^2}{\omega_{1,n}} - N\sum_k \frac{\tilde{f}_{2,k}^2}{\omega_{2,k}}\right) + 2\sigma_1 \sigma_2 = 0$$
(24)

$$\left(\lambda_1 - \frac{\lambda_3^2}{\lambda_2}\right)\sigma_1 = 0 \tag{25}$$

$$\sigma_2 = -\frac{\lambda_3}{\lambda_2}\sigma_1 \tag{26}$$

Из последних двух уравнений имеем две ветви: нулевое либо ненулевое σ_i . Сначала рассмотрим $\sigma_i \neq 0$, которая полностью нарушает начальную калибровочную симметрию. Используя ур. (25), получаем $\lambda_1 \lambda_2 = \lambda_3^2$. Из (23) и (24) следует $r_1 = r_2$. Это означает, что ненулевое λ_3 совместно только с грассманианом. В итоге, обозначая $\sigma \equiv \sigma_1 = -\frac{\lambda_3}{\lambda_2}\sigma_2$ и $r \equiv r_1$, приходим к системе

$$N\sum_{n} \frac{f_{1,n}^2}{\omega_{1,n}} - r = 0; \qquad (-\partial_x^2 + \lambda_1 + \lambda_2)\tilde{f}_{1,n} = \omega_{1,n}^2 \tilde{f}_{1,n}$$
(27)

$$N\sum_{k} \frac{\tilde{f}_{2,k}^{2}}{\omega_{2,k}} + \frac{\lambda_{1} + \lambda_{2}}{\lambda_{2}}\sigma^{2} - r = 0; \qquad -\partial_{x}^{2}\tilde{f}_{2,k} = \omega_{2,k}^{2}\tilde{f}_{2,k}$$
(28)

$$\lambda_1 \lambda_2 = \lambda_3^2 \tag{29}$$

Выясним, какие ГУ совместны с решением. Согласно [21], для DN-ND гран. условий на моды $\tilde{f}_{1,n}$ уравнение (27) имеет решение на интервале $L \in (\Lambda_1^{-1}, +\infty)$ и на $(0, +\infty)$ для DD-NN. С другой стороны, ур. (28) с ненулевой σ имеет решение на $(0, \Lambda_1^{-1})$ для DN-ND условий на $\tilde{f}_{2,n}$ и не имеет решений в случае DD-NN (значения $\Lambda_1 = \Lambda_2$ взяты из теории на прямой). В таком случае нам остается выбрать DD-NN на $\tilde{f}_{1,n}$ и DN-ND на $\tilde{f}_{2,n}$, что соответствует решению при $L \in (0, \Lambda_1^{-1})$. Если $\lambda_1 = \lambda_2 = \lambda_3$ условия на границе можно переписать следующим образом через поля $\psi_{i\alpha}$

$$\psi_{i\alpha}(0) = 0, \quad \partial_x(\psi_{1\alpha} - \psi_{2\alpha})(L) = (\psi_{1\alpha} + \psi_{2\alpha})(L) = 0, \quad \text{if} \quad \alpha = 2, ..., N+1;$$
 (30)

$$\partial_x \psi_{i\alpha}(0) = 0, \quad \partial_x (\psi_{1\alpha} + \psi_{2\alpha})(L) = (\psi_{1\alpha} - \psi_{2\alpha})(L) = 0, \quad \text{if} \quad \alpha = N + 2, ..., 2N + 1; \tag{31}$$

$$\partial_x \sigma_i(0) = \partial_x \sigma_i(L) \tag{32}$$

Рассмотрим "классическую" часть плотности полной энергии

$$\lambda_1 \sigma_1^2 + \lambda_2 \sigma_2^2 + 2\lambda_2 \sigma_1 \sigma_2 - (\lambda_1 + \lambda_2)r$$

Квадратичную форму в данном выражении можно диагонализовать, например, следующим

образом

$$\lambda_1 \sigma_1^2 + \lambda_2 \sigma_2^2 + 2\lambda_2 \sigma_1 \sigma_2 = \lambda_2 \left(\sigma_2 + \frac{\lambda_3}{\lambda_2} \sigma_1\right)^2 + \left(\lambda_1 - \frac{\lambda_3^2}{\lambda_2}\right) \sigma_1^2 \tag{33}$$

Используя ур. (26) и (29), а также закон инерции Сильвестра, заключаем, что в теории имеется одно массивне и одно безмассовое поле. Заметим, что наличие безмассовой степени свободы заставляет ожидать появления соответсвующих степенных поправок в полной энергии (см. следующий раздел 3.4).

Исследуем теперь случа
й $\sigma_1=\sigma_2=0.$ Как и прежде, из (23) и (24) получается
 $r_1=r_2=r,$ и система уравнений

$$N\sum_{n} \frac{\tilde{f}_{1,n}^2}{\omega_{1,n}} - r = 0, \qquad \left(-\partial_x^2 + \frac{\lambda_1 + \lambda_2 + \sqrt{(\lambda_1 - \lambda_2)^2 + 4\lambda_3^2}}{2} \right) \tilde{f}_{1,n} = \omega_{1,n}^2 \tilde{f}_{1,n}$$
$$N\sum_{k} \frac{\tilde{f}_{2,k}^2}{\omega_{2,k}} - r = 0, \qquad \left(-\partial_x^2 + \frac{\lambda_1 + \lambda_2 - \sqrt{(\lambda_1 - \lambda_2)^2 + 4\lambda_3^2}}{2} \right) \tilde{f}_{2,k} = \omega_{2,k}^2 \tilde{f}_{2,k}$$

Из этого следует уравнение

$$N\sum_{n}\frac{\tilde{f}_{1,n}^2}{\omega_{1,n}}=N\sum_{k}\frac{\tilde{f}_{2,k}^2}{\omega_{2,k}}$$

которое не имеет решений в случае трансляционно инвариантных λ_1 и λ_2 . Поэтому фаза с нулевой σ_i и ненулевой λ_3 отсутствует.

Мы изучили Gr(N,2) и F(N,2,1) NLSM на конечном интервале и выяснили, что для $\lambda_3 = 0$ допустимая длина интервала L ограничена снизу и, наоборот, $\lambda_3 \neq 0$ L огранчен сверху. Теперь очень просто построить модель, для которой L ограничен как сверзу, так и снизу. Рассмотрим NLSM на F(N,3,1) с эффективным действием

$$S_{eff} = (N-1)Tr \ln \begin{pmatrix} -\partial^2 + \lambda_1 & \lambda_{12} & \lambda_{13} \\ \lambda_{12} & -\partial^2 + \lambda_2 & \lambda_{23} \\ \lambda_{13} & \lambda_{23} & -\partial^2 + \lambda_3 \end{pmatrix} + \int d^2x [(\partial_\mu \sigma_1)^2 + \lambda_1 (|\sigma_1|^2 - r_1) + (\partial_\mu \sigma_2)^2 + \lambda_2 (|\sigma_2|^2 - r_2) + (\partial_\mu \sigma_3)^2 + \lambda_3 (|\sigma_3|^2 - r_3) + 2\lambda_{12}\sigma_1\sigma_2 + 2\lambda_{13}\sigma_1\sigma_3 + 2\lambda_{23}\sigma_2\sigma_3]$$

и предположим, что $\lambda_{12} = \lambda_{13} = 0$, $\lambda_{23} \neq 0$ и $r_3 = r_2 > r_1$. Можно легко убедиться, что это соответсвует фазе, живущей на интервале $L \in (\Lambda_1^{-1}, \Lambda_2^{-1})$, где $\Lambda_i = \Lambda_{uv} \exp(-2\pi/Ng_i^2)$ (i = 1, 2, 3) и $g_2 = g_3$.

3.4 *L*-зависимость

Исследуем зависимоть энергии от длины интервала L в различных фазах. Сначала рассмотрим модель на флаге (см. фиг. 3). Вычисления, схожие с проделанными в [18], приводят к следующим выражениям

$$E(L) = \frac{NLm_1^2}{\pi} \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{K_1(2Lm_1n)}{Lm_1n} + \frac{NLm_1^2}{4\pi} + (m_1 \leftrightarrow m_2), \quad \text{if} \quad L > L_2, \quad m_iL >> 1$$

$$E(L) = \frac{NLm_1^2}{\pi} \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{K_1(2Lm_1n)}{Lm_1n} + \frac{NLm_1^2}{4\pi} + \frac{N\pi}{96L}, \quad \text{if} \quad L_2 > L > L_1, \quad m_1L >> 1 \quad (34)$$

где K_1 - модифицированная функция Бесселя, $m_1 = \Lambda_1$ и $m_2 = \Lambda_2$. Первые слагаемые являются энергией Казимира для массивного комплексного скалярного поля со смешанными DN ГУ, которой можно принебречь, если $m_1L >> 1$. Люшеровский член в энергии хиггсовской фазы $\frac{N\pi}{96L}$ является безмассовым пределом первого. Его появления связано с наличием безмассового поля σ_2 в данной фазе. Заметим, что граничные вклады $m_i/2$ в энергию Казимира, а также 1/L поправки к массе отсутствуют для выбранных гран. условий.

Для модели на грассманиане в фазе с $\lambda_3 \neq 0$ и полностью нарушенной калибровочной U(2) полная энергия имеет вид

$$E(L) = \frac{NLm^2}{4\pi} - \frac{N\pi}{8L} + \frac{N\pi}{96L}, \quad \text{if} \quad L < L_1, \quad mL >> 1$$
(35)

где $m^2 = \Lambda_1^2 + \Lambda_2^2$. Как было показано в предыдущем разделе (см. ур. (33)), в этой фазе имеется одно безмассовое поле, поэтому появляется слагаемое $\frac{N\pi}{96I}$.

3.5 Заключение

Мы исследовали однородные решения 2d NLSM на грассманиане Gr(N, 2) и флаге F(N, 2, 1)на интервале и нашли сильную взаимосвязь между фазовой структурой и граничными условиями. Флаговая сигма-модель со смешанными DN ГУ испытывает фазовый переход из фазы с $U(1) \times U(1)$ калибровочной симметрией в фазу с U(1). Решение существует только для $L < \Lambda_1^{-1}$. С другой стороны, для грассманиана и граничных условий типа Робина (30) имеется только фаза с полностью нарушенной U(2) и $L < \Lambda_1^{-1}$.

Можно сделать общие утверждения для других гран. условий:

I. Для сигма-моделей F(N, 2, 1) и Gr(N, 2) длина интервала L имеет минимум, если наложены следующие ГУ на ψ_1 and ψ_2 : смешанные DN-ND, периодические и DD+NN. Действительно, в \mathbb{CP}^{N-1} сигма-модели с перечисленными ГУ для достаточно малых L всегда имеется поле с ненулевым vev (see [21], [20] and [40, 41] respectively). Тогда, из ур. (20) явно следует, что седловые уравнения не имеют решений для таких L.

II. Модели F(N, 2, 1) и Gr(N, 2) не могут находиться в фазе полного деконфайнмента, что следует из I и ур. (29).

Можно ожидать, что NLSMs с общим флагом могут иметь более сложную фазовую структуру. Сигма-модель с полным флагом $SU(N)/U(1)^{N-1}$ недавно рассматривалась в [42, 43]. Было показано, что такая теория (в отличие от \mathbb{CP}^{N-1}) может быть бесщелевой в ИК пределе. Другим открытым вопросом является наличие неоднородного основного состояния в грассмановой и флаговой NLSMs.

4 Appendix

4.1 Collective description

For j = 0 we have

$$\frac{1}{D(\theta^{(1)})\tilde{Z}_N} \left(\sum_{k=1}^N \frac{\partial^2}{\partial \theta_k^2}\right) \left[D(\theta^{(1)})\tilde{Z}_N\right] = \sum_{k=1}^N \frac{\partial^2 \tilde{F}_N}{\partial \theta_k^{(1)2}} + \sum_{k=1}^N \left(N\frac{\partial \tilde{F}_N}{\partial \theta_k^{(1)}}\right)^2$$

$$+2\sum_{k=1}^{N}U_{k}\left(N\frac{\partial\tilde{F}_{N}}{\partial\theta_{k}^{(1)}}\right)+\frac{1}{N^{2}}\sum_{k=1}^{N}\frac{1}{D(\theta^{(1)})}\frac{\partial^{2}}{\partial\theta_{k}^{(1)2}}D(\theta^{(1)})$$
(36)

$$U_{k} = \frac{1}{N} \frac{\partial}{\partial \theta_{k}^{(1)}} \log D(\theta^{(1)}) = \frac{1}{2N} \sum_{j \neq k} \cot \frac{\theta_{k}^{(1)} - \theta_{j}^{(1)}}{2}$$
(37)

In the large N limit

$$N\frac{\partial \tilde{F}_N}{\partial \theta_k^{(1)}} = \frac{\partial}{\partial \theta} \frac{\delta \tilde{F}}{\delta \sigma_1(\theta)} \bigg|_{\theta = \theta_k}$$
(38)

$$\frac{1}{N}\sum_{k=1}^{N} \to \int_{0}^{2\pi} \sigma_{1}(\theta) d\theta \tag{39}$$

and the first term $\frac{\partial^2 \tilde{F}_N}{\partial \theta_k^{(1)2}}$ of order $O(\frac{1}{N})$ can be neglected.

Also

$$\frac{1}{N^2} \sum_{k=1}^{N} \frac{1}{D(\theta^{(1)})} \frac{\partial^2}{\partial \theta_k^{(1)2}} D(\theta^{(1)}) = \frac{1}{N} \sum_{k=1}^{N} \frac{1}{D(\theta^{(1)})} \frac{\partial}{\partial \theta_k^{(1)}} \Big[U_k D(\theta^{(1)}) \Big]$$
$$= \frac{1}{N} \sum_{k,m} \Big[D(\theta) \frac{\partial U_k}{\partial \theta_k} + N D(\theta) U_k^2 \Big] = -\frac{1}{N^2} \sum_{k,j \neq k} \frac{1}{4 \sin^2 \frac{\theta_k^{(1)} - \theta_j^{(1)}}{2}} + \sum_{k,m} U_k^2 \tag{40}$$

When $N \to \infty$

$$U_k \to U(\theta) = \frac{1}{2} \int \cot\left(\frac{\theta - \theta'}{2}\right) \sigma_1(\theta') d\theta'$$
(41)

and

$$\frac{1}{N}\sum_{k=1}^{N}U_{k}^{2} = \int_{0}^{2\pi}U^{2}(\theta)\sigma_{1}(\theta)d\theta$$
(42)

If $|k - j| \ll N$ then $\theta_k^{(1)} - \theta_j^{(1)} \approx (k - j)/(N\sigma_1(\theta^{(1)}))$ so

$$\frac{1}{N^3} \sum_{k,j \neq k} \frac{1}{4\sin^2 \frac{\theta_k^{(1)} - \theta_j^{(1)}}{2}} = \frac{1}{N^3} \sum_{k,j \neq k} \frac{1}{(\theta_k^{(1)} - \theta_j^{(1)})^2} = \frac{1}{N^3} \sum_{k=1}^N \left[\sum_{j=1,j \neq k}^N \frac{N^2 \sigma_1^2(\theta_k^{(1)})}{(j-k)^2} \right]$$
$$= \frac{1}{N} \sum_{k=1}^N \frac{\pi^2}{3} \sigma_1^2(\theta_k^{(1)}) = \frac{\pi^2}{3} \int_0^{2\pi} \sigma_1(\theta)^3 d\theta$$
(43)

Thus, for $\tau = 0$

$$\frac{\partial \tilde{F}}{\partial A} = \frac{1}{2} \int_0^{2\pi} \sigma_1(\theta) \left[\left(\frac{\partial}{\partial \theta} \frac{\delta \tilde{F}}{\delta \sigma_1(\theta)} + U(\theta) \right)^2 - \frac{\pi^2}{3} \sigma_1^2(\theta) \right] d\theta$$
(44)

or

$$\frac{\partial S}{\partial A} = \frac{1}{2} \int_0^{2\pi} \sigma_1(\theta) \left[\left(\frac{\partial}{\partial \theta} \frac{\delta S}{\delta \sigma_1(\theta)} \right)^2 - \frac{\pi^2}{3} \sigma_1^2(\theta) \right] d\theta \tag{45}$$

that is Hamilton-Jacobi equation for Das-Jevicki Hamiltonian

$$H[\sigma(\theta), \Pi(\theta)] = \frac{1}{2} \int_0^{2\pi} \sigma(\theta) \left[\left(\frac{\partial \Pi}{\partial \theta} \right)^2 - \frac{\pi^2}{3} \sigma^2(\theta) \right] d\theta$$
(46)

For j = 1 we have in the leading-order in N

$$\frac{1}{D(\theta^{(1)})\tilde{Z}_{N}}\left(\sum_{k=1}^{N}\frac{\partial^{2}}{\partial\theta_{k}^{2}}\right)^{2}\left[D(\theta^{(1)})\tilde{Z}_{N}\right] = \frac{1}{N^{3}}\sum_{k,m}\frac{1}{D(\theta^{(1)})}\frac{\partial^{4}}{\partial\theta_{k}^{(1)2}\partial\theta_{m}^{(1)2}}D(\theta^{(1)}) \\
+ \frac{4}{N^{2}}\sum_{k,m}\left(N\frac{\partial\tilde{F}_{N}}{\partial\theta_{m}^{(1)}}\right)\frac{1}{D(\theta^{(1)})}\frac{\partial^{3}}{\partial\theta_{k}^{(1)2}\partial\theta_{m}^{(1)}}D(\theta^{(1)}) \\
+ \frac{4}{N}\sum_{k,m}\left(N\frac{\partial\tilde{F}_{N}}{\partial\theta_{m}^{(1)}}\right)\left(N\frac{\partial\tilde{F}_{N}}{\partial\theta_{k}^{(1)}}\right)\frac{1}{D(\theta^{(1)})}\frac{\partial^{2}}{\partial\theta_{k}^{(1)2}}D(\theta^{(1)}) \\
+ \frac{2}{N}\sum_{k,m}\left(N\frac{\partial\tilde{F}_{N}}{\partial\theta_{m}^{(1)}}\right)^{2}\frac{1}{D(\theta^{(1)})}\frac{\partial^{2}}{\partial\theta_{m}^{(1)2}}D(\theta^{(1)}) \\
+ 4\sum_{k,m}\left(N\frac{\partial\tilde{F}_{N}}{\partial\theta_{m}^{(1)}}\right)^{2}\left(N\frac{\partial\tilde{F}_{N}}{\partial\theta_{k}^{(1)}}\right)\frac{1}{D(\theta^{(1)})}\frac{\partial}{\partial\theta_{k}^{(1)}}D(\theta^{(1)}) \\
+ N\sum_{k,m}\left(N\frac{\partial\tilde{F}_{N}}{\partial\theta_{m}^{(1)}}\right)^{2}\left(N\frac{\partial\tilde{F}_{N}}{\partial\theta_{m}^{(1)}}\right)^{2}\left(N\frac{\partial\tilde{F}_{N}}{\partial\theta_{k}^{(1)}}\right)^{2} \\$$
(47)

Let us check that all the terms have the same order.

$$\sum_{k,m} \frac{1}{D(\theta)} \frac{\partial^4}{\partial \theta_k^2 \partial \theta_m^2} D(\theta) = \frac{N}{D(\theta)} \sum_{k,m} \frac{\partial^2}{\partial \theta_m^2} \frac{\partial}{\partial \theta_k} \Big[U_k D(\theta) \Big]$$
$$= \frac{N}{D(\theta)} \sum_{k,m} \frac{\partial^2}{\partial \theta_m^2} \Big[D(\theta) \frac{\partial U_k}{\partial \theta_k} + N D(\theta) U_k^2 \Big]$$
$$\frac{N}{D(\theta)} \sum_{k,m} \frac{\partial}{\partial \theta_m} \Big[D(\theta) \frac{\partial^2 U_k}{\partial \theta_k \partial \theta_m} + N D(\theta) U_m \frac{\partial U_k}{\partial \theta_k} + 2N D(\theta) U_k \frac{\partial U_k}{\partial \theta_m} + N^2 D(\theta) U_m U_k^2 \Big]$$
(48)

On can easily to make sure that the terms with $\sum_{k,m} \frac{\partial U_k}{\partial \theta_m}$ are nullified. Indeed

$$\sum_{k,m} \frac{\partial U_k}{\partial \theta_m} = \frac{1}{N} \sum_m \sum_{k,j \neq k} \left[\frac{\delta_{k,m}}{4\sin^2 \frac{\theta_k - \theta_j}{2}} - \frac{\delta_{j,m}}{4\sin^2 \frac{\theta_k - \theta_j}{2}} \right] = 0$$
(49)

Therefore

=

$$\frac{1}{N^3} \sum_{k,m} \frac{1}{D(\theta^{(1)})} \frac{\partial^4}{\partial \theta_k^{(1)2} \partial \theta_m^{(1)2}} D(\theta^{(1)}) = N\left(\sum_k \frac{\partial U_k}{\partial \theta_k^{(1)}}\right) \left(\sum_m \frac{\partial U_m}{\partial \theta_m^{(1)}}\right)$$

$$+2\left(\sum_{k}U_{k}^{2}\right)\left(\sum_{m}\frac{\partial U_{m}}{\partial\theta_{m}^{(1)}}\right)+N\left(\sum_{k}U_{k}^{2}\right)\left(\sum_{m}U_{m}^{2}\right)$$
(50)

Similarly, we can represent the other terms through the quantities of order $O(1)\left(N\frac{\partial \tilde{F}_N}{\partial \theta_k}\right)$ and U_k

$$\frac{4}{N} \sum_{k,m} \left(N \frac{\partial \tilde{F}_N}{\partial \theta_m^{(1)}} \right) \left(N \frac{\partial \tilde{F}_N}{\partial \theta_k^{(1)}} \right) \frac{1}{D(\theta^{(1)})} \frac{\partial^2}{\partial \theta_k^{(1)} \partial \theta_m^{(1)}} D(\theta^{(1)}) \\
= 4N \left(\sum_k U_k \left(N \frac{\partial \tilde{F}_N}{\partial \theta_k^{(1)}} \right) \right) \left(\sum_m U_m \left(N \frac{\partial \tilde{F}_N}{\partial \theta_m^{(1)}} \right) \right), \tag{51} \\
4 \sum_{k,m} \left(N \frac{\partial \tilde{F}_N}{\partial \theta_m^{(1)}} \right)^2 \left(N \frac{\partial \tilde{F}_N}{\partial \theta_k^{(1)}} \right) \frac{1}{D(\theta^{(1)})} \frac{\partial}{\partial \theta_k^{(1)}} D(\theta^{(1)})$$

$$=4N\left(\sum_{k}U_{k}\left(N\frac{\partial\tilde{F}_{N}}{\partial\theta_{k}^{(1)}}\right)\right)\left(\sum_{m}\left(N\frac{\partial\tilde{F}_{N}}{\partial\theta_{m}^{(1)}}\right)^{2}\right),$$

$$(52)$$

$$\frac{4}{N^2} \sum_{k,m} \left(N \frac{\partial \tilde{F}_N}{\partial \theta_m^{(1)}} \right) \frac{1}{D(\theta^{(1)})} \frac{\partial^3}{\partial \theta_k^{(1)2} \partial \theta_m^{(1)}} D(\theta^{(1)}) = 4 \left(\sum_k \frac{\partial U_k}{\partial \theta_k^{(1)}} \right) \left(\sum_m U_m \left(N \frac{\partial \tilde{F}_N}{\partial \theta_m^{(1)}} \right) \right) + 4N \left(\sum_k U_k^2 \right) \left(\sum_m U_m \left(N \frac{\partial \tilde{F}_N}{\partial \theta_m^{(1)}} \right) \right),$$
(53)

$$\frac{2}{N} \sum_{k,m} \left(N \frac{\partial \tilde{F}_N}{\partial \theta_m^{(1)}} \right)^2 \frac{1}{D(\theta^{(1)})} \frac{\partial^2}{\partial \theta_m^{(1)2}} D(\theta^{(1)}) = 2 \left(\sum_k \frac{\partial U_k}{\partial \theta_k^{(1)}} \right) \left(\sum_m \left(N \frac{\partial \tilde{F}_N}{\partial \theta_m^{(1)}} \right)^2 \right) + 2N \left(\sum_k U_k^2 \right) \left(\sum_m \left(N \frac{\partial \tilde{F}_N}{\partial \theta_m^{(1)}} \right)^2 \right).$$
(54)

We see that (47) divided by N^3 is exactly the square of (36)! Eventually, using mathematical induction we come to the general expression in the large-N limit

$$\frac{1}{D(\theta^{(1)})\tilde{Z}_N} \left(\frac{1}{N^3} \sum_{k=1}^N \frac{\partial^2}{\partial \theta_k^2} \right)^{j+1} \left[D(\theta^{(1)})\tilde{Z}_N \right] = \frac{1}{N^3} \left[\frac{1}{D(\theta^{(1)})\tilde{Z}_N} \left(\sum_{k=1}^N \frac{\partial^2}{\partial \theta_k^2} \right) \left[D(\theta^{(1)})\tilde{Z}_N \right] \right]^{j+1}$$
(55)

4.2 Derivation of *L*-dependence

Let us hold a derivation of Eq. (34) for total energy L-dependence in the phase with partially broken symmetry. It corresponds

$$\lambda_3 = 0, \quad m_2 = 0, \quad \sigma_2 \neq 0, \quad m_1 \neq 0, \quad \sigma_1 = 0$$

therefor the gap Eq. (19) with "mixed" DN b.c. is

$$N\sum_{n=1}^{\infty} \int_{-\infty}^{\infty} \frac{dk}{2\pi L} \frac{1}{k^2 + \left(\frac{\pi(n-1/2)}{L}\right)^2 + \lambda_1} - r_1 = 0$$
(56)

One can calculate the sum using the following formulas

$$\sum_{\mathbb{Z}} \frac{1}{\left(\frac{\pi n}{L}\right)^2 + \omega^2} = \frac{2L}{\omega} \left(\frac{1}{2} + \frac{1}{\exp(2L\omega) - 1}\right)$$
(57)

and

$$2\sum_{\mathbb{N}} \frac{1}{\left(\frac{\pi(n-1/2)}{L}\right)^2 + \omega^2} = \sum_{\mathbb{Z}} \frac{1}{\left(\frac{\pi n}{2L}\right)^2 + \omega^2} - \sum_{\mathbb{Z}} \frac{1}{\left(\frac{\pi n}{L}\right)^2 + \omega^2}$$
(58)

Thus we have

$$r_{1} - \frac{N}{2\pi L} \int_{0}^{+\infty} dk \left[\frac{L}{\sqrt{k^{2} + m_{1}^{2}}} + \frac{4L}{\sqrt{k^{2} + m_{1}^{2}}} \frac{1}{\exp(4L\sqrt{k^{2} + m_{1}^{2}} - 1)} - \frac{2L}{\sqrt{k^{2} + m_{1}^{2}}} \frac{1}{\exp(2L\sqrt{k^{2} + m_{1}^{2}} - 1)} \right] = 0$$
(59)

Let us introduce a quantity

$$Q(m_1L) = \int_0^\infty \frac{2dk}{\sqrt{k^2 + (m_1L)^2}} \frac{1}{\exp(2\sqrt{k^2 + (m_1L)^2}) - 1}$$
(60)

and use the equation $\Lambda_1 = \Lambda_{uv} \exp(-2\pi/Ng_1^2)$ then come to the following equalities

$$2\pi r_1 - N\log(\Lambda_{uv}L) = -N\log(\Lambda_1L) = -N\log(m_1L) + 2NQ(2m_1L) - NQ(m_1L)$$
(61)

If $m_1L >> 1$

$$Q(m_1 L) = \frac{\sqrt{\pi/m_1} e^{-2m_1 L}}{\sqrt{L}}$$
(62)

Therefor $m_1 = \Lambda_1$ and 1/L corrections are absent.

After Pauli-Villars regularization effective action is

$$S_{eff}^{reg} = 2N \sum_{i=0}^{2} c_i Tr \log(-\partial^2 + m_1^2 + \tilde{m}_i^2) - \int d^2 x r_1 m_1^2 + \dots$$
(63)

where "..." means m_1 -independent terms, and

$$\tilde{m}_0 = 0, \quad c_0 = 1, \quad c_1 = \frac{\tilde{m}_2^2}{\tilde{m}_1^2 - \tilde{m}_2^2}, \quad c_2 = \frac{-\tilde{m}_1^2}{\tilde{m}_1^2 - \tilde{m}_2^2}$$
(64)

Varying it with respect to m_1^2 , we get

$$\int dx_0 r_1 = N \sum_{i=0}^2 c_i Tr \frac{1}{-\partial^2 + m_1^2 + \tilde{m}_i^2}$$
(65)

If $m_1L >> 1$ then the approximation (62) is valid, and

$$r_1 = \frac{1}{2\pi L} \left(\frac{L}{2} \log \left(\frac{m_1^2 + \tilde{m}_2^2}{m_1^2} \right) + \frac{L \tilde{m}_2^2}{2(\tilde{m}_1^2 - \tilde{m}_2^2)} \log \left(\frac{m_1^2 + \tilde{m}_2^2}{m_1^2 + \tilde{m}_1^2} \right) \right)$$
(66)

Suppose that $\tilde{m}_1^2 = a M^2$ and $\tilde{m}_2^2 = M^2$ and take

$$a \to 1, \quad M \to \infty$$
 (67)

then regularised value for r_1 is

$$r_1^{reg} = -\frac{N}{4\pi} \tag{68}$$

The quantity $Tr \log(-\partial^2 + m_1^2)$ is the Casimir energy for a massive scalar field. For mixed DN-ND boundary conditions, it is

$$\frac{Lm_1^2}{\pi} \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{K_1(2Lm_1n)}{Lm_1n} \tag{69}$$

The quantity $Tr \log(-\partial^2 + m_2^2)$, where $m_2 = 0$, is the Casimir energy for a massless scalar field

$$\frac{N\pi}{96L}\tag{70}$$

Putting it all together we get

$$E(L) = \frac{NLm_1^2}{\pi} \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{K_1(2Lm_1n)}{Lm_1n} + \frac{NLm_1^2}{4\pi} + \frac{N\pi}{96L}, \quad \text{if} \quad L_2 > L > L_1, \quad m_1L >> 1 \quad (71)$$

Similarly one can get Eq. (35).

Список литературы

- M. Douglas, V. Kazakov, Large N Phase Transition in Continuum QCD₂, Phys. Lett. B 319 (1993) 219-230.
- [2] D. Gross, A. Matytsin, Some Properties of Large N Two Dimensional Yang-Mills Theory, Nucl. Phys. B 437 (1995) 541-584.
- [3] A. Zamolodchikov, Expectation value of composite field $T\bar{T}$ in two-dimensional quantum field theory, [arXiv:hep-th/0401146].
- [4] S. Dubovsky, V. Gorbenko, M. Mirbabayi, Asymptotic Fragility, Near AdS₂ Holography and TT, JHEP 2017, 136 (2017).

- [5] F Smirnov, A. Zamolodchikov, On space of integrable quantum field theories, [arXiv:1608.05499].
- [6] L. McGough, M. Mezei, H. Verlinde, Moving the CFT into the bulk with TT, JHEP 2018, 10 (2018).
- [7] A. Giveon, N. Itzhaki, D. Kutasov, $T\overline{T}$ and LST, [arXiv:1701.05576].
- [8] R. Conti, L. Iannella, S. Negro, R. Tateo, Generalised Born-Infeld models, Lax operators and the TT perturbation, JHEP 2018, 7 (2018).
- [9] L. Santilli, M. Tierz, Large N phase transition in TT-deformed 2d Yang-Mills theory on the sphere, JHEP 2019, 54 (2019).
- [10] S. Cordes, G. Moore, S. Ramgoolam, Lectures on 2D Yang-Mills Theory, Equivariant Cohomology and Topological Field Theories, [arXiv:hep-th/9411210].
- [11] S. Dubovsky, V. Gorbenko, G. Hernandez-Chifflet, TT Partition Function from Topological Gravity, JHEP 2018, 158 (2018).
- [12] V. Kazakov, T. Wynter, Large N Phase Transition In The Heat Kernel On The U(N) Group, Nucl. Phys. B 440 (1995) 407-420.
- [13] M. Kruczenski, A. Lawrence, Random walks and the Hagedorn transition, JHEP 2006, (2006).
- [14] Luca V. Iliesiu, On 2D gauge theories in Jackiw-Teitelboim gravity, [arXiv:1909.05253].
- [15] A. D'Adda, M. Lüscher, and P. Di Vecchia, A 1/N expandable series of nonlinear σ-models with instantons, Nucl. Phys. B 146 (1978) 63 [INSPIRE].
- [16] E. Witten, Instantons, the quark model, and the 1/N expansion, Nucl. Phys. B 149.2 (1979) 285 [INSPIRE].
- [17] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Two-Dimensional Sigma Models: Modeling Nonperturbative Effects of Quantum Chromodynamics, Phys. Rep. 116 (1984) 103 [INSPIRE].
- [18] A. Milekhin, $\mathbb{C}P(N-1)$ model on finite interval in the large N limit, Phys. Rev. D 86 (2012) 105002 [arXiv:1207.0417] [INSPIRE].
- [19] A. Gorsky, M. Shifman and A. Yung, Higgs and Coulomb/confining phases in "twisted-mass" deformed CP^{N-1} model, Phys. Rev. D 73 (2006) 065011 [hep-th/0512153] [INSPIRE].
- [20] S. Monin, M. Shifman and A. Yung, Non-Abelian String of a Finite Length, Phys. Rev. D 92 (2015) no.2, 025011 [arXiv:1505.07797] [INSPIRE].
- [21] A. Milekhin, CP^N sigma model on a finite interval revisited, Phys. Rev. D 95 (2017) 085021
 [arXiv:1612.02075] [INSPIRE].
- [22] R. D. Pisarski, Nonlinear σ models of symmetric spaces, Phys. Rev. D 20 (1979) 3358 [INSPIRE].
- [23] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Volume 80 1st Edition, Academic Press, New York, (1978).
- [24] D. Pavshinkin, Grassmannian and Flag sigma models on interval: phase structure and Ldependenc JHEP 2019, 075 (2019).
- [25] D. Pavshinkin, Grassmannian sigma model on a finite interval, Phys. Rev. D 97 (2018) 025001 [arXiv:1708.06399] [INSPIRE].
- [26] T. Itoh, P. Oh, and C. Ryou, Gauge symmetry enhancement and radiatively induced mass in the large N nonlinear sigma model, Phys. Rev. D 64 (2001) 045005 [hep-th/0101041]

[INSPIRE].

- [27] T. Itoh, P. Oh, and C. Ryou, Duality and Enhanced Gauge Symmetry in 2+1 Dimensions, [hep-th/0104204] [INSPIRE].
- [28] M. Hongo T. Misumi Y. Tanizaki, Phase structure of the twisted $SU(3)/U(1)^2$ flag sigma model on $R \times S^1$, JHEP **02** (2019) 070 [arXiv:1812.02259] [INSPIRE].
- [29] T. Misumi, M. Nitta and N. Sakai, Classifying bions in Grassmann sigma models and non-Abelian gauge theories by D-branes, PTEP 2015 (2015) 033B02 [arXiv:1409.3444] [INSPIRE].
- [30] M. Eto, T. Fujimori, Y. Isozumi, M. Nitta, K. Ohashi, K. Ohta and N. Sakai, Non-Abelian vortices on cylinder: Duality between vortices and walls, Phys. Rev. D 73 (2006) 085008 [hep-th/0601181] [INSPIRE].
- [31] D. Tong, Quantum Vortex Strings: A Review, Annals Phys. 324 (2009) 30 [arXiv:0809.5060]
 [INSPIRE].
- [32] A. Gorsky, M. Shifman, A. Yung, Non-Abelian Meissner Effect in Yang-Mills Theories at Weak Coupling, Phys. Rev. D 71 (2005) 045010 [hep-th/0412082] [INSPIRE].
- [33] D. Bykov, Haldane limits via Lagrangian embeddings, Nucl. Phys. B855 (2012) 100-127, 1104.1419 [arXiv:1104.1419] [INSPIRE].
- [34] M. Lajkó, K. Wamer, F. Mila, and I. Affleck, Generalization of the Haldane conjecture to SU(3) chains, Nucl. Phys. B924 (2017) 508-577 [arXiv:1706.06598] [INSPIRE].
- [35] D. Bykov, The geometry of antiferromagnetic spin chains, Commun. Math. Phys. 322 (2013) 807-834 1206.2777 [arXiv:1206.2777] [INSPIRE].
- [36] D. Bykov, The 1/N-Expansion for Flag-Manifold σ -Models, Theoret. and Math. Phys. 197:3 (2018) 1691-1700.
- [37] M. Shifman and A. Yung, Non-Abelian Strings and the Lüscher Term, Phys. Rev. D 77 (2008) 066008 [arXiv:0712.3512] [INSPIRE].
- [38] E. Cremmer and B. Julia, The N=8 Supergravity Theory. 1. The Lagrangian, Phys. Lett. B 80 (1978) 48 [INSPIRE].
- [39] S. Bolognesi, K. Konishi and K. Ohashi, Large-N CP^{N-1} sigma model on a finite interval: general Dirichlet boundary conditions, JHEP 1806 (2018) 064 [arXiv:1802.08543] [INSPIRE].
- [40] S. Bolognesi, K. Konishi and K. Ohashi, Large-N \mathbb{CP}^{N-1} sigma model on a finite interval, JHEP 1610 (2016) 073 [arXiv:1604.05630] [INSPIRE].
- [41] A. Betti, S. Bolognesi, S. B. Gudnason, K. Konishi and K. Ohashi, Large-N CP^{N-1} sigma model on a finite interval and the renormalized String Energy, JHEP 1801 (2018) 106 [arXiv:1708.08805] [INSPIRE].
- [42] Y. Tanizaki, T. Sulejmanpasic, Anomaly and global inconsistency matching: θ -angles, SU(3)/U(1)² nonlinear sigma model, SU(3) chains and its generalizations, JHEP 1801 (2018) 106 [arXiv:1805.11423] [INSPIRE].
- [43] K. Ohmori, N. Seiberg, and S.-H. Shao, Sigma Models on Flags, SciPost Phys. 6 (2019) no.2 017 [arXiv:1809.10604] [INSPIRE].