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Abstract

The research aims at considering the specific cases of CP (N−1) model in classic field
theory and the search of exact solutions. For that, the equations of the motion supplement
with restrictions, which simplify finding concrete solutions. The model can rewrite through a
convenient matrix form, which promotes to investigate various cases. Some cases analyzed in
detail. The significant part of the work dedicates the research of three particular cases in the
1+1 dimensions. The first case represents the time-harmonic oscillations, in which constants
of integration corresponding Hamiltonian density obtained and the link with the Ermakov
equation found. The second case describes some exact solutions in CP (1). The third case
demonstrates the connection between a specific class of gauge fields with Hopf equation
in the 1 + 1 dimensions, provides arguments about the possible existence of corresponding
topologically nontrivial solutions.
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Designations

• aµbµ := a0b0 − aibi

• Suppose summation over repeated indices ajbj :=
N∑
j=1

ajbj. We will write
N∑
j=1

ajbj, when

it’s necessary

• Dµ = ∂µ − iAµ, @ = ∂µ∂µ, 4 = ∂i∂i

• j ∈ 1, N ⇔ j ∈ {1, 2, ..., N}
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Introduction

Theoretical physicists develop mathematical models to describe physical phenomena. The
purpose of any physicist is to create a coherent theory explaining experimental data. There-
fore, connections between theories are meaningful and valuable. It explains the importance of
the investigation nonlinear sigma model, which intertwines with numerous modern branches
of theoretical physics. Because of the complexity of the theory and its nonlinearity, people
analyze various cases and particular solutions.

Nonlinear sigma model CP (N − 1) is a complex scalar field theory with interac-
tion, where N fields form complex projective space. The model is well-researched in two
dimensions because of simplicity and applicability.

The main aspects of the CP (N − 1) model for quantum chromodynamics (QCD)
investigated by Novikov, Shifman, Vainshtein, and Zakharov [1]. They point out the parallel
between two-dimensional sigma models and four-dimensional Yang-Mills theory, applying
in QCD. CP (N − 1) model serves as a toy model for QCD due to existing features like
asymptotic freedom, confinement, the generation of the mass gap, and chiral symmetry
breaking. Moreover, CP (N − 1) can use for examining the validity of low energy theorems
in QCD.

Solutions of CP (N − 1) are essential for the nonabelian string theory. According to
Tong’s study [2], CP (N − 1) sigma model describes the low-energy dynamics of the string
worldsheet. Furthermore, Shifman and Yung showed correspondence between BPS kinks in
CP (1) and confined monopoles [3].

CP (N − 1) model appears in the quantum field theory (QFT). Gorsky, Pikalov,
Vainstein explored the model in two dimensions and showed homogeneous solutions are not
the ground state [4]. They obtained new solitonic solutions, which turned out to have less
energy than in the homogeneous case. There are a lot of investigations CP (N − 1) in QFT
in two dimensions on the plane, sphere, cylinder, disc, and annulus [5].

The set of interesting classic solutions Misumi, Nitta, and Sakai find on a cylinder
with twisted boundary conditions [6, 7]. These solutions have finite and fractional action
and constitute instantons and anti-instantons with a fractional topological number. Some of
their works dedicated to the modeling of interaction that particles.

The complex projective plane is well-studied in such branches of math as algebraic
geometry and topology. That’s why the classic field theory of the CP (N −1) model attracts
mathematics attention. Din and Zakrzewski described general solutions on the Riemann
sphere with finite action in terms of N rational functions [8].

CP (N − 1) model has a link with supersymmetry and numerous applications, such
as antiferromagnetic spin chains and quantum Hall effect.

However, there is no comprehensive description of all set solutions. New particular
solutions of the CP (N −1) model directly reflect on results in many branches of physics and
promote their development. Therefore, the study of new classic and quantum solutions of
the CP (N − 1) model and their classification is significant for modern theoretical physics.
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The object of research represents a nonlinear CP (N − 1) model in classic field
theory.

The subject of research is particular solutions of nonlinear CP (N − 1) model in
classic field theory.

The purpose of the research represents the search particular exact solutions of
nonlinear CP (N − 1) model in classic field theory.

Research problems:

1. Describe the model most conveniently;

2. Define the uncomplicated cases and solve the corresponding system of equations.

The method of research is a theoretical analysis of the system of nonlinear differential
equations.

The theoretical significance of the research represents in search of features of
the model which can help to explore more complex cases and quantum cases.

The work divides into three parts. The first part describes the general aspects of the
theory. Furthermore, we represent the matrix formulation of the model. The second part
focuses on the particular central cases and defines the behavior of solutions. In the third
part, we consider three cases in 1 + 1 dimensions, in which we receive exact results.

The first case represents the time-harmonic oscillations, in which we obtained con-
stants of integration corresponding Hamiltonian density and discovered the link with the
Ermakov equation. The second case describes some exact solutions in the CP (1) model.
The third case reveals the connection of a specific class of gauge fields with Hopf equation in
the 1+1 dimension and provides reasons for the possible existence of topologically nontrivial
solutions. The links with well-known differential equations give a new look on the model,
and the arguments for existence topologically nontrivial solutions can point out the direction
for a search of new particular solutions. Furthermore, the solutions of the second and the
third cases are valuable for understanding the nature of confined monopoles, which connects
with the CP (1) model.
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1 General case

Nonlinear CP (N−1) can derive from O(N) sigma model through adding real auxiliary fields
Aµ and changing derivatives ∂µ on the covariant Dµ = ∂µ− iAµ. That changes provide local
gauge invariance.

In that part, we consider primary characteristics of nonlinear CP (N − 1) model
in classic field theory, describe convenient formulation via square matrices, select the field
corresponding for gauge transformations, and obtain an explicit expression for field strength
tensor Fµν .

The model set uniquely in the classic field theory by the following parameters

• N - number of complex fields;

• M - the space on which fields define;

• the choice of gauge;

• the choice of boundary conditions.

In this paper we consider

• N or 2 complex fields;

• M = R× Rm or (R× R);

• the Lorentz gauge ∂µAµ = 0;

• we don’t choose definite boundary conditions and only analyze general case

1.1 Basic characteristic

Lagrangian density
Lagrangian of the theory

L = DµnjDµnj − Λ(n̄jnj − r) (1.1)

L = ∂µn̄j∂µnj + iAµ (n̄j∂µnj − nj∂µn̄j) + rAµAµ − Λ(n̄jnj − r) (1.2)

where define r > 0. The last term is the Lagrangian multiplier and describes restric-
tions on fields. In this paper, we consider Λ some constant. However, there are hints that this
simplification limits us1. The Lagrangian (1.1) preserves the local gauge invariance under
transformations

ñj = nje
iα(t,x)

Ãµ = Aµ + ∂µα
(1.3)

1If we suppose that Λ is not constant in the system of equations in Table case 2 for CP (1) with additional
restriction might have nontrivial solutions
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If we vary by Λ, we get relations

n̄jnj = r (1.4)

n̄j∂µnj = −nj∂µn̄j (1.5)

If we vary by Aµ, we get that

Aµ = − i

2r
(n̄j∂µnj − nj∂µn̄j) (1.6)

Hamiltonian density
The canonical momentum πj

πj =
∂L
∂ṅj

= ˙̄nj + iA0n̄j (1.7)

In the Lorentz gauge
∂µAµ = 0 (1.8)

the Hamiltonian density H looks

H = πjṅj + π̄j ˙̄nj − L

= ṅj ˙̄nj + ∂in̄j∂inj − r
(
A2

0 + AiAi
)

(1.9)

Here we substitute (1.6). The gauge field Aµ reduces the density of Hamiltonian.

Equations of motion

− @nj + 2iAµ∂µnj + inj∂µAµ − Λnj = 0, j ∈ 1, N (1.10)

In the Lorentz gauge (1.8), the equations of motion are

− @nj + 2iAµ∂µnj − Λnj = 0 (1.11)

1.2 Matrix form of the nonlinear CP (N − 1) model

Complex diagonal matrices allow rewriting the task more compactly, without indexes. The
comparison of the two representations is in Table 1. (E - unit matrix)

8



Table 1: Two representations of the model
N complex fields nj = nj(t, x)| n̄jnj = r Diagonal matrix M ∈ GL(N,C)| TrM̄M = r

{nj(t, x)}j∈1,N M =


n1(t, x) 0 · · · 0

0 n2(t, x)
. . . ...

... . . . . . . 0
0 · · · 0 nN(t, x)


Density of the Lagrangian

L = DµnjDµnj + Λ(n̄jnj − r) L = Tr
(
DµMDµM + Λ(M̄M − r

N
E)
)

Aµ = − i
2r

(n̄j∂µnj − nj∂µn̄j) Aµ = − i
2r
Tr
(
M̄∂µM −M∂µM̄

)
Density of the Hamiltonian

H = ṅj ˙̄nj + ∂in̄j∂inj − r (A2
0 + AiAi) H = Tr

(
˙̄MṀ + ∂iM̄∂iM

)
− r (A2

0 + AiAi)

Equations of motion

− @ nj + 2iAµ∂µnj − Λnj = 0, j ∈ 1, N
nj = ρje

iϕj

− @M + 2iAµ∂µM − ΛM = 0
M = ReiΦ

M = ReiΦ (1.12)

R =


ρ1(t, x) 0 · · · 0

0 ρ2(t, x)
. . . ...

... . . . . . . 0

0 · · · 0 ρN(t, x)

 , Φ =


ϕ1(t, x) 0 · · · 0

0 ϕ2(t, x)
. . . ...

... . . . . . . 0

0 · · · 0 ϕN(t, x)


Notice, that eiΦ we can consider as a point on N -dimensional tor T n. With consider-

ation matrix exponential form (1.12), Aµrewrites

Aµ =
1

r
Tr R2∂µΦ =

Tr R2∂µΦ

Tr R2
(1.13)

The equations of motion (1.11) rewrite through the system, corresponding imaginary,
and real parts − @R + (∂µΦ∂µΦ− 2Aµ∂µΦ− ΛE)R = 0

R @ Φ + 2 (∂µΦ− AµE) ∂µR = 0
(1.14)

E is the unit matrix. The significant part of this paper dedicates to the study of the
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nonlinear system of differential equations (1.14) and its particular cases.

1.3 Gauge transformations

Let’s consider gauge transformations in two representations in the Table 2

Table 2: Gauge transformations in two representations
N complex fields nj = nj(t, x) Diagonal matrix M ∈ GL(N,C)

ñj = nje
iα(t,x)

Ãµ
(1.6)
= Aµ + ∂µα

M̃ = Meiα(t,x)E

Ãµ
(1.13)
= Aµ + ∂µα

E - unit matrix. This prompts us to select the part of the matrix that responsible for
gauge transformations

Φ =


ϕ1(t, x) 0 · · · 0

0 ϕ2(t, x)
. . . ...

... . . . . . . 0

0 · · · 0 ϕN(t, x)

 = (1.15)

=



TrΦ
N

+ ϕ1(t, x)− TrΦ

N︸ ︷︷ ︸
ψ1(t,x)

0 · · · 0

0 TrΦ
N

+ ϕ2(t, x)− TrΦ

N︸ ︷︷ ︸
ψ2(t,x)

. . . ...

... . . . . . . 0

0 · · · 0 TrΦ
N

+ ϕN(t, x)− TrΦ

N︸ ︷︷ ︸
ψN (t,x)


(1.16)

In the designation

α(t, x) =
TrΦ

N
, Ψ = diag(ψ1, ..., ψN) (1.17)

the matrix of phases has the decomposition

Φ = α(t, x)E + Ψ, T rΨ = 0 (1.18)

It means that we always can write

Aµ = ∂µα +
1

r
Tr R2∂µΨ,

T r R2 = r

TrΨ = 0
(1.19)

As well as TrΨ = 0 we can use the basis for diagonal traceless matrices
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Ψ =
N−1∑
i=1

φihi, hi = Eii − Ei+1,i+1 (1.20)

Eii = diag(0, ..., 0i−1, 1i, 0i+1, ..., 0). From here

Aµ = ∂µα +
1

r

N−1∑
i=1

(ρ2
i − ρ2

i+1)∂µφi (1.21)

We can write an explicit expression for Fµν

Fµν = ∂µAν − ∂νAµ =
2

r
Tr R(∂µR∂νΨ− ∂νR∂µΨ) (1.22)

Tr R2 = r, T r R∂µR = 0, T rΨ = 0, T r ∂µΨ = 0 (1.23)

Notice that
1) Fµν doesn’t contain gauge term and is gauge invariant;
2) Fµν = 0 in cases R = const, Ψ = const, R = Ψ. The non-trivial Fµν can be only

when amplitude and phases of fields change.

There is an interesting observation that we can write the formula (1.22) through the
two traceless matrices. For that, we represent the matrix R in a new way

R2 =
r

N
E + P, Tr P = 0 (1.24)

If we use the basis for traceless matrices P =
N−1∑
i=1

pihi, we get restrictions on pi

| p1 |≤
r

N
, | pN−1 |≤

r

N
, | pi − pi+1 |≤

r

N
, i ∈ 1, N − 2 (1.25)

With that restriction, we can rewrite (1.22) through the two traceless matrices

Fµν = 1
r
Tr (∂µP ∂νΨ− ∂νP ∂µΨ)

Tr P = 0, T rΨ = 0
(1.26)

And in that case, the gauge field Aµ has the form

Aµ = ∂µα +
1

r
Tr P∂µΨ,

T r P = 0

TrΨ = 0
(1.27)

We can consider Fµν as a skew-symmetric form from the two traceless matrices P and
Ψ

Fµν = 〈P,Ψ〉µν (1.28)

Obtained formulas demonstrate the convenience of the matrix representation. Further
research on the role of the basis for traceless matrices for the nonlinear system of equations
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and the CP (N − 1) model is necessary.
Now we conveniently rewrite the model. The system of equations (1.14) has a com-

plicated view, so it is a point to investigate extreme cases.
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2 The central specific cases

Consider the matrix form of the model in 1 +m dimensions with N complex fields

M = ReiαE+iΨ

Tr R2 = r, T rΨ = 0
(2.1)

The representation (2.1) has 3 central parameters R, α and Ψ. As well as equations
of motion quite complicated, we can consider different cases, which all lead in the Table 3, to
catch on the main dependencies. The cases differ in what we are going to deem as a function
or constant. (C - constant, F - function)

Table 3: The central specific cases
R α Ψ Aµ Fµν Equation of motion

1) C C C 0 0 Fulfilled

2) C C F 1
r
Tr R2∂µΨ 0

{
∂µΨ∂µΨ− 2Aµ∂µΨ = ΛE

@Ψ = 0

3) C F C ∂µα 0

{
∂µα∂µα + Λ = 0

@α = 0

4) C F F (1.19) 0

{
∂µΦ∂µΦ− 2Aµ∂µΦ = ΛE

@Φ = 0

5) F C C 0 0 (@ + Λ)R = 0

6) F C F 1
r
Tr R2∂µΨ (1.22)

{
− @R + (∂µΨ∂µΨ− 2Aµ∂µΨ− ΛE)R = 0

R @ Ψ + 2 (∂µΨ− AµE) ∂µR = 0

7) F F C ∂µα 0

{
@R + (∂µα∂µα + Λ)R = 0

@α = 0

8) F F F (1.19) (1.22)

{
− @R + (∂µΦ∂µΦ− 2Aµ∂µΦ− ΛE)R = 0

R @ Φ + 2 (∂µΦ− AµE) ∂µR = 0

Let’s look at some cases.
2) Consider substitutions
I. Φ = Φ(ωµxµ), ωµ = const |ωµωµ = 0. Then the upper equation of the system leads

Λ = 0⇒ contradiction. It means that the case implies different frequencies of the fields.
II. Ψ = Ωµxµ, T rΨ = 0, Ωµ = diag(ω1

µ, ..., ω
N
µ ) = const | ΩµΩµ = 0. It is the simple

case of plane waves with different frequencies. We have Aµ = const, and the upper equation
is the only restriction on constants AµΩµ = −Λ

2
E

III. Consider the case in Rm spacial dimensions2 with m > 1.
2When m = 1, the reasoning is not right. The explanation is in Connection of the gauge field with Hopf

equation
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Ψ =



ψ(ω1
µxµ) 0 · · · 0

0 ψ(ω2
µxµ)− ψ(ω1

µxµ)
...

. . .
... ψ(ωN−1

µ xµ)− ψ(ωN−2
µ xµ) 0

0 · · · 0 −ψ(ωN−1
µ xµ)


Suggest ω1

µω
1
µ = 0, (ωjµ − ωj−1

µ )(ωjµ − ωj−1
µ ) = 0, ωN−1

µ ωN−1
µ = 0, then ∂µΨ∂µΨ = 0

and

− 2Aµ∂µΦ = ΛE (2.2)

If we multiply on R2, take the trace and remind view of Aµ, we get

AµAµ = −Λ

2
(2.3)

This case takes place when the dimension of the space higher than the number of
fields N . It provides assumptions fulfilled.

3) Particular solutions of the system can be plane waves

α = ωµxµ, ωµωµ = −Λ, ωµ = const (2.4)

5) Each field ρj should satisfy the Klein Gordon Fock equation. The parameter
Λ = m2 corresponds to the mass of the field. In that case, we have N fields with the same
mass

√
Λ.

7) That case can join 3) and 5). If α = ωµxµ, ωµ = const, then we have N fields
with the same mass

√
Λ + ωµωµ. So through the gauge field α, we can change the mass of

all fields. In particular, if ωµωµ = −Λ, then we have @R = 0, and solutions for fields are real
massless plane waves.

Those cases are useful because they allow us to comprehend what we should get in
different extreme cases. Besides, we see the intricacy of the theory lies in the equations for
the phases of fields Ψ.

The possible continuation of the work can be an analysis of all specific cases for the
CP (1) model in 1 + 1 dimensions. The idea is to construct general solutions by joining
particular cases.
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3 Specific cases in 1+1 dimension

3.1 CP (N − 1) and time-harmonic oscillations

The purpose of this part is to investigate time-harmonic oscillations. For the 1+1 space-time
dimension, accurate solutions obtained. It has found interesting constants of integration
similar Hamiltonian density and angular momentum and has found a link with nonlinear
Ermakov equation.

Transition to real fields

In that part, we change Λ → −Λ. At first, we make a transition to the real and imaginary
parts of fields.

Denote nj(t, x) = uj(t, x) + ivj(t, x). The gauge field expresses

Aµ
(1.6)
=

1

r
(uj∂µvj − vj∂µuj) (3.1)

The Hamiltonian density is

H = ṅj ˙̄nj + ∂in̄j∂inj − rA2
0 − rA2

i

= u̇2
j + v̇2

j + (u′j)
2 + (v′j)

2 − rA2
0 − rA2

i (3.2)

The equations of motion are− @ uj − 2Aµ∂µvj + Λuj = 0

− @ vj + 2Aµ∂µuj + Λvj = 0
(3.3)

3.1.1 Special substitution

Consider the particular case of time-harmonic oscillations in 1 + 1 dimensions

nj(t, x) = (uj(x) + ivj(x))eiωt, ω = const ∈ R (3.4)

Such substitution allows us to obtain an exact solution for fields nj.

For (3.4) we get that A0
(1.6)
= ω ⇒ A0 = const ∈ R⇒ the equivalent case is

nj(t, x) = (uj(x) + ivj(x))eiA0t, A0 = const ∈ R (3.5)

From the choice of gauge (1.8) follows A′1 = 0 and

A1 = const ∈ R (3.6)

Substitute (3.5) in equations of motion (1.11) and get the system
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u′′j + 2A1v
′
j + (Λ− A2

0)uj = 0 (3.7)

v′′j − 2A1u
′
j + (Λ− A2

0)vj = 0 (3.8)

If we multiply (3.7) on uj, (3.8) on vj, sum up the obtained equations by j and use
(3.1), we get

N∑
j=1

(
uju

′′
j + vjv

′′
j

)
+ 2rA2

1 + (Λ− A2
0)r = 0 (3.9)

Remind that

(uj)
2 + (vj)

2 = r ⇒ uju
′
j + vjv

′
j = 0

uju
′′
j + vjv

′′
j + u′ju

′
j + v′jv

′
j = 0

(3.10)

In (3.10) differentiation by time or coordinate. So, using (3.10) we get a value relation

N∑
j=1

(u′j)
2 + (v′j)

2 = 2rA2
1 + (Λ− A2

0)r (3.11)

Let’s multiply (3.7) on u′j, (3.8) on v′j, sum obtained equations and get

(
(u′j)

2 + (v′j)
2 + (Λ− A2

0)(u2
j + v2

j )
)′

= 0 (3.12)

Define

Ej(x) =
1

2

(
(u′j)

2 + (v′j)
2 + (Λ− A2

0)(u2
j + v2

j )
)
, E0 =

N∑
j=1

Ej (3.13)

We see that the view of Ej reminds energy for the harmonic oscillator. The (3.12)
leads to

Ej = const (3.14)

Ej =
1

2

(
(u′j)

2 + (Λ− A2
0)u2

j

)︸ ︷︷ ︸
Uj(x)

+
1

2

(
(v′j)

2 + (Λ− A2
0)v2

j

)︸ ︷︷ ︸
V j(x)

= const ∈ R ∀j ∈ 1, N (3.15)

Uj(x) + Vj(x) = 2Ej (3.16)

16



E0 =
N∑
j=1

Ej =
1

2

N∑
j=1

(u′j)
2 + (v′j)

2 + (Λ− A2
0)(u2

j + v2
j )

(3.11)
= r(A2

1 − A2
0 + Λ)

E0 = r(Λ− AµAµ) = rΩ2 (3.17)

where Ω2 = Λ− AµAµ. Suppose Λ− A2
0 > 0. Then Ej > 0, ∀j ∈ 1, N

Uj = const

There is no mixing of fields between the imaginary and real parts.

Uj(x) = const ⇒ Vj(x) = 2Ej − Uj = const

Then
(u′j)

2 + (Λ− A2
0)u2

j = Uj (3.18)

In that case, the equations can integrate, and we get an explicit view of functions
uj(x) and vj(x) uj(x) =

√
Uj

Λ−A2
0
sin(x

√
Λ− A2

0 + ξj)

vj(x) =
√

Vj
Λ−A2

0
sin(x

√
Λ− A2

0 + ζj)
(3.19)

From the substitution obtained functions (3.19) in (3.1) we get that A1 = 0. It means
that Ω2 = Λ− AµAµ = Λ− A2

0 and equations of motion become simpler

u′′j + Ω2uj = 0

v′′j + Ω2vj = 0
(3.20)

The particular case turns out to be the harmonic oscillator.
We get that A1 = 0 ⇒ ujv

′
j − vju′j = 0 ⇒the condition on constants Uj, Vj, ξj, ζj :

N∑
j=1

√
UjVjsin(ξj − ζj) = 0 (3.21)

◦ The case ξj = ζj satisfies the condition. Then the final result for the fields looksuj(x) =

√
Uj

Ω
sin(Ωx+ ζj)

vj(x) =

√
Vj

Ω
sin(Ωx+ ζj)

(3.22)

The solution of the model looks

nj(t, x) =

√
2Ej

Ω
eiA0t+iγjsin(xΩ + ζj), tg γj =

√
Vj
Uj

(3.23)

We get uniform rotation in an N -dimensional complex space. All fields rotate with
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the same frequency. We can rewrite

ρj =

√
2Ej

Ω
sin(xΩ + ζj)

nj = ρje
iα+iγj

α = A0t

Aµ = ∂µα =

(
A0

0

) (3.24)

The solution corresponds to table case 7.

◦ The case ξj 6= ζj . Then the solution looks

nj(t, x) =
eiA0t+iγj

Ω

(√
Ujsin(xΩ + ξj) + i

√
Vjsin(xΩ + ζj)

)
(3.25)

with restriction (3.21). We can rewrite

ñj =

√
Uj

Ω
sin(xΩ + ξj) + i

√
Vj

Ω
sin(xΩ + ζj)

nj = ñje
iα+iγj

α = A0t

Aµ = ∂µα =

(
A0

0

) (3.26)

The solution corresponds to table case 8.

Initial conditions

◦ The case ξj = ζj

Remind constraint n̄jnj = r ⇒

N∑
j=1

2Ejsin
2 (xΩ + ζj) = rΩ2 = E0|A1=0 (3.27)

As well as Ω2 = E0

r
from (3.27) ⇒

N∑
j=1

Ejsin
2 (xΩ + ζj) =

E0

2
=

1

2

N∑
j=1

Ej

N∑
j=1

Ejcos (2xΩ + 2ζj) = 0

The expression can represent

cos 2Ωx

(
N∑
j=1

Ejcos 2ζj

)
− sin 2Ωx

(
N∑
j=1

Ejsin 2ζj

)
= 0 (3.28)

As well as x is not constant (3.28) is right only when
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N∑
j=1

Ejcos 2ζj = 0

N∑
j=1

Ejsin 2ζj = 0

⇔
N∑
j=1

Eje
2iζj = 0 (3.29)

(3.29) describes a linearly dependent system of N vectors on the complex plane

◦ The case ξj 6= ζj .

n̄jnj = r
(3.25)⇒

N∑
j=1

Ujsin
2(xΩ + ξj) + Vjsin

2(xΩ + ζj) = rΩ2 = E0 (3.30)

cos(2Ωx)

(
N∑
j=1

Ujcos(2ξj) + Vjcos(2ζj)

)
+ sin(2Ωx)

(
N∑
j=1

Ujsin(2ξj) + Vjsin(2ζj)

)
= 0

(3.31)
N∑
j=1

Ujcos(2ξj) + Vjcos(2ζj) = 0

N∑
j=1

Ujsin(2ξj) + Vjsin(2ζj) = 0

⇒
N∑
j=1

(
Uje

2iξj + Vje
2iζj
)

= 0 (3.32)

Figure 1: The linearly dependent system of vectors of initial conditions

~u1

~v1

~u2

~v2

...~uN−1

~vN−1

~uN

~vN

(3.32) describes a linearly dependent system of 2N vectors on the complex plane
(2-dimensional space). Phase displacement leads to the system of 2N vectors.

The Hamiltonian density

◦ ξj = ζj If we substitute (3.23) in (3.2) and take into account (3.29), we get

H = E0(A0)

◦ ξj 6= ζj If we substitute (3.25) in (3.2) and take into account (3.32), we get

19



H = E0(A0)

Therefore, constants Ej are like energies. Their sum forms the density of Hamiltonian.

Uj 6= const

There is a mixing of fields between the imaginary and real parts. We will look for the
solution in polar coordinates.

uj(x) = ρj(x) cos(ϕj(x))

vj(x) = ρj(x) sin(ϕj(x))
(3.33)

If we use (3.33) in (3.7) and (3.8), one can show that the system is equivalentρ′′j − ρj(ϕ′j)2 + 2A1ρjϕ
′
j + (Λ− A2

0)ρj = 0

2ρ′jϕ
′
j + ρjϕ

′′
j − 2A1ρ

′
j = 0

(3.34)

In the form (3.33)

A1 =
1

r

N∑
j=1

ρ2
jϕ
′
j (3.35)

A1 looks like the sum of sectorial speeds. (3.15) rewrites

(ρ′j)
2 + ρ2

j

(
(ϕ′j)

2 + Λ− A2
0

)
= 2Ej > 0 (3.36)

Notice, that (3.36) is similar to the equation of the circle x2 + y2 = r2. We can write

√
2Ejcos νj(x) = ρ′j (3.37)√
2Ejsin νj(x) = ρj

√
(ϕ′j)

2 + Λ− A2
0 (3.38)

νj(x) - is unknown function. From (3.37) we find ρj

ρj(x) =
√

2Ej

ˆ
dx cos νj(x) + λj (3.39)

Example of “uniform rotation”

Put ϕ′j = const = υj. Then ϕj = xυj + λj and

ρ2
j(υ

2
j + Λ− A2

0) = 2Ejsin
2νj(x) ⇒

ρj =

√
2Ej

υ2
j + Λ− A2

0

sin νj(x) =
√

2Ej

ˆ
dx cos νj(x) + λj
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Differentiate by x and get

ν ′j cos νj√
υ2
j + Λ + A2

0

= cos νj(x) ⇒ νj(x) = x
√
υ2
j + Λ− A2

0 + ζj

So, we find the unknown function νj(x) explicitly. It helps us to find ρj

ρj(x) =

√
2Ej

υ2
j + Λ− A2

0

sin
(
x
√
υ2
j + Λ− A2

0 + ζj

)
(3.40)

The exact solution looks

nj(t, x) =

√
2Ej

υ2
j + Λ− A2

0

sin
(
x
√
υ2
j + Λ− A2

0 + ζj

)
eiA0t+ixυj+iλj (3.41)

We should prove that it is the solution of equations. If we substitute (3.41) in (3.34)
we get 

(
A1υj − υ2

j

)
sin

(
x
√
υ2
j + Λ− A2

0 + ζj

)
= 0

(υj − A1)ρ′j = 0

Our function (3.41) is the solution then and only then υj = A1. So, we get that all
complex fields should rotate at the same speed. The result is similar to (3.23). Fields can
represent

nj(t, x) =

√
2Ej

Ω
eiA0t+iA1x+iλjsin (xΩ + ζj) (3.42)

Here notation is Ω2(A0, A1) = Λ − AµAµ = E0

r
, where E0 from (3.17). We see the

energy of the whole system defines the frequency of “spatial oscillations”.
The real and complex parts of the function (3.42) have the same look as (3.23), so

initial conditions describe by N linearly dependent vectors as well as (3.27) -(3.32).
We can rewrite

ρj =

√
2Ej

Ω
sin(xΩ + ζj)

nj = ρje
iα(t,x)+iλj

α = A0t+ A1x

Aµ = ∂µα =

(
A0

A1

) (3.43)

The solution corresponds to table case 7. Notice that if A1 = 0, then fields (3.42)
become (3.23) with the same Ω. It means that the found earlier case corresponds to the
uniform rotation with A1 = 0.

If we substitute (3.42) in (3.2) and take into account (Ω2 = E0

r
, (3.29), (3.35)), we get
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H = E0(A0, A1) (3.44)

Therefore, constants Ej are like energies. Their sum forms the density of Hamiltonian.
Comments:
1) (3.44)means that the amplitudes of fields proportionate the square root of energy

density.
2) Let’s look at the formula (3.42), remind that E0 = rΩ2, and write

nj(t, x) =

√
2

r

√
Ej
E0

eiα(t,x)+iλjsin (xΩ + ζj) (3.45)

The look (3.45) points out that the amplitude of a field proportional to the square
root of the ratio of corresponding energy to the energy of the whole system.

Analysis of the nonlinear system

Consider (3.34) and notice that the bottom equation (3.34) can be integrated with new
constants Lj

(ϕ′j − A1)ρ2
j = Lj = const (3.46)

ϕ′j = A1 +
Lj
ρ2
j

(3.47)

The curious observation connecting with constants Lj is

N∑
j=1

Lj =
N∑
j=1

ρ2
jϕ
′
j − A1

N∑
j=1

ρ2
j = A1r − A1r = 0

N∑
j=1

Lj = 0 (3.48)

Constants Lj resemble angular momentum, and (3.48) resemble the law of conser-
vation of momentum. Substitute (3.47) in (3.34) and get second-order nonlinear Ermakov
equation

ρ′′j + Ω2ρj =
L2
j

(ρj)3
(3.49)

Here Ω2 = E0

r
, as in the example above.

It is convenient to represent our results of time-harmonic oscillations in the Table 4
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Table 4: Comparing two cases of time-harmonic oscillations
Spacial “uniform” rotation General case

ϕ′j = A1 ϕ′j = A1 +
Lj

ρ2
j

ρ′′j + Ω2ρj = 0 ρ′′j + Ω2ρj =
L2
j

(ρj)3

It means that spacial uniform rotation is the limiting solution of the Ermakov equation
for Lj → 0.

Hence, we will demand that solutions of the Ermakov equation give us uniform rota-
tion and fields (3.42) when Lj = 0.

However, we will not investigate the Ermakov equation because there is a more
straightforward solution to the initial system of equations. The point is that we did a
nonlinear change of variables in the linear differential system of equation. The construction
above helps us to make a meaningful interpretation of the case and describe the constants
of integration with unique properties.

3.1.2 The solution of the case

Equations (3.7) and (3.8) can trivially solve through the replacement

u′j = w

v′j = s (3.50)

Then we rewrite

d

dx


uj

vj

wj

sj

 =


0 0 1 0

0 0 0 1

A2
0 − Λ 0 0 −2A1

0 A2
0 − Λ 2A1 0




uj

vj

wj

sj

 (3.51)

The eigenvalues λ of the matrix above are λ1,2,3,4 = ±iA1 ± iΩ (Ω2 = A2
1 − A2

0 + Λ).
So the solution


uj

vj

wj

sj

 (x) = eiΩx+iA1x


u1
j

v1
j

w1
j

s1
j

+eiΩx−iA1x


u2
j

v2
j

w2
j

s2
j

+e−iΩx+iA1x


u3
j

v3
j

w3
j

s3
j

+e−iΩx−iA1x


u4
j

v4
j

w4
j

s4
j


(3.52)

where uij, vij, wij, sij ∈ C− const, i ∈ 1, 4. From (3.50) follows how constants ui, vi and
wi, si are connected. Also we know, that functions uj(x) and vj(x) are real, so
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uj(x) = ūj(x)

vj(x) = v̄j(x)
⇒

u1
j = a1

je
iϕ1

j = ū4
j , v1

j = b1
je
iψ1

j = v̄4
j

u2
j = a2

je
iϕ2

j = ū3
j , v2

j = b2
je
iψ2

j = v̄3
j

From that we find

nj(t, x) = eiωt(a1
j cos

(
Ωx+ A1x+ ϕ1

j

)
+ib1

j cos
(
Ωx+ A1x+ ψ1

j

)
+

+a2
j cos

(
Ωx− A1x+ ϕ2

j

)
+ ib2

j cos
(
Ωx− A1x+ ψ2

j

)
)

(3.53)

Equivalent form is

nj(t, x) = eiA0t (z1cos (Ωx+ A1x) + z2sin (Ωx+ A1x) + z3cos (Ωx− A1x) + z4sin (Ωx− A1x))

(3.54)
z1, z2, z3, z4 ∈ C
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3.2 CP (1) and amplitude rotation

Shifman and Yung, in their study, pointed out to the correspondence between BPS kinks in
CP (1) and confined monopoles. That link motivates the search of exact solutions for the
CP (1) model. We focus on solutions with nonlinear amplitude and phase dependence. A
class of such solutions has found up to one unknown function.

| n1 |2 + | n1 |2= r - equation of circle. So we can write

n1 =
√
r cos α(t, x) eiϕ1(t,x) (3.55)

n2 =
√
r sin α(t, x) eiϕ2(t,x) (3.56)

Aµ
(1.6)
= cos2α ∂µϕ1 + sin2α ∂µϕ2 (3.57)

If we substitute (3.55), (3.56) in (1.11) we get the system



−
(

1
2
(∂µϕ1)2 + 1

2
∂µϕ1∂µϕ2 + Λ− (∂µα)2

)
cos α + �α sinα− 1

2
((∂µϕ1)2 − ∂µϕ1∂µϕ2) cos 3α = 0

−� ϕ1cos α + 3
2
∂µα∂µ(ϕ1 − ϕ2)sinα− 1

2
(∂µα∂µ(ϕ1 − ϕ2)) sin 3α = 0

−� α cos α−
(

1
2
(∂µϕ2)2 + 1

2
∂µϕ1∂µϕ2 + Λ− (∂µα)2

)
sinα + 1

2
((∂µϕ2)2 − ∂µϕ1∂µϕ2) sin 3α = 0

3
2
∂µα∂µ(ϕ1 − ϕ2)cos α−�ϕ2sinα + 1

2
(∂µα∂µ(ϕ1 − ϕ2)) cos 3α = 0

(3.58)

Zero coefficients

If we annihilate the coefficients in front of sinα, cos α, sin 3α, cos 3α, we get another system

�α = 0 ∂µα∂µ(ϕ1 − ϕ2) = 0

�ϕ1 = 0 ∂µϕ1∂µ(ϕ1 − ϕ2) = 0

�ϕ2 = 0 ∂µϕ2∂µ(ϕ1 − ϕ2) = 0

1
2
(∂µϕ2)2 + 1

2
∂µϕ1∂µϕ2 + Λ− (∂µα)2 = 0

1
2
(∂µϕ1)2 + 1

2
∂µϕ1∂µϕ2 + Λ− (∂µα)2 = 0

(3.59)

From that, we can get
I.

(∂µϕ1)2 = ∂µϕ1∂µϕ2 = (∂µϕ2)2 = (∂µα)2 − Λ (3.60)

II. For the substitution (3.55) and (3.56) Lorentz calibration is fulfilled automatically

∂µAµ = 0
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III.

AµAµ = (∂µα)2 − Λ (3.61)

IV. It can directly prove from (3.60)

ϕ1 = ϕ+ c1

ϕ2 = ϕ+ c2, c1, c2 ∈ R,�ϕ = 0

So,

n1 =
√
r cos α eiϕ+ic1 (3.62)

n2 =
√
r sin α eiϕ+ic2 (3.63)

where α and ϕ connect through the relation

∂µϕ∂µϕ
(3.60)
= ∂µα∂µα− Λ

(3.61)
= AµAµ (3.64)

It shows that

Aµ = ∂µϕ (3.65)

�α = 0

�ϕ = 0
⇒

α = α1(t− x) + α2(t+ x)

ϕ = β1(t− x) + β2(t+ x)

(3.64) is equivalent

4α′1(t− x)α′2(t+ x)− Λ = 4β′1(t− x)β′2(t+ x) (3.66)

Take into account, that if we have only one wave α1 or α2 then ∂µα∂µα = 0. Similarly,
if we have only β1 or β2 then ∂µϕ∂µϕ = 0

(3.62) and (3.63) can be rewritten

n1 =
√
r cos(α1(t− x) + α2(t+ x)) ei(β1(t−x)+β2(t+x)+c1) (3.67)

n2 =
√
r sin(α1(t− x) + α2(t+ x)) ei(β1(t−x)+β2(t+x)+c2) (3.68)

Let’s pay attention to (3.66). If we go to other variables
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u = t− x

v = t+ x

we can get, that

α′′1(u)α′2(v) = β′′1 (u)β′2(v) (3.69)

α′1(u)α′′2(v) = β′1(u)β′′2 (v) (3.70)

If we use that relations and (3.66), we can show, that either α′1(u) = const or α′2(v) =

const. If α′2(v) = const we can find (C1, C2 ∈ R)

α′1(u) = C1 + C2b(u) α1 = C1(t− x) + C2

´ t−x
0

b(u)du

α′2(v) = Λ
4C1

α2 = Λ
4C1

(t+ x)

β′1(u) = b(u) β1 =
´ t−x

0
b(u)du

β′2(v) = ΛC2

4C1
β2 = ΛC2

4C1
(t+ x)

And the fields are equal

n1 =
√
r cos

C1(t− x) + C2

t−xˆ

0

b(u)du+
Λ

4C1

(t+ x)

 e
i
(´ t−x

0 b(u)du+
ΛC2
4C1

(t+x)+c1
)

n2 =
√
r sin

C1(t− x) + C2

t−xˆ

0

b(u)du+
Λ

4C1

(t+ x)

 e
i
(´ t−x

0 b(u)du+
ΛC2
4C1

(t+x)+c2
)

b(u) is unknown function

Aµ = ∂µϕ⇒ Aµ =

(
ϕt

ϕx

)
=

(
β′1(t− x) + β′2(t+ x)

−β′1(t− x) + β′2(t+ x)

)

Aµ =

(
ΛC2

4C1
+ b(t− x)

ΛC2

4C1
− b(t− x)

)
(3.71)

27



3.3 CP (1) and Hopf equation

3.3.1 Connection of the gauge field with Hopf equation

Let’s add the restriction on the Lorentz gauge in 1+1 dimensions∂µAµ = 0

AµAµ = −Λ
2

(3.72)

That restriction is analog (2.3). Inm spacial dimensions, there are particular solutions
below Table 3 of central cases. But we can’t do the suggested substitution in one spatial
dimension, because in that case, there is only one phase function ψ for both fields.

n1 = r1e
iψ

n2 = r2e
−iψ (3.73)

If we make suggested substitution ψ = ψ(ωµxµ), ωµωµ = 0, then Aµ ∼ ωµ, and
equation of motion ∂µΨ∂µΨ − 2Aµ∂µΨ = ΛE is reduced to the relation Λ = 0, what can’t
be. So, we can’t use the substitution ψ = ψ(ωµxµ).

In 1+1 dimensions, restrictions (3.72) lead to the interesting connection with the
quasi-linear Hopf equation. Let’s consider the gauge field Aµ

~A =

(
A0

A1

)
=

(
u

v

)

∂µAµ = 0 ⇔ u′t = v′x (3.74)

AµAµ = −Λ

2
⇔ u2 − v2 = −Λ

2
(3.75)

(3.75)⇒

u′tu = v′tv

u′xu = v′xv

(3.74)⇒

v′xu = v′tv

u′xu = u′tv
⇒


~A =

 u

v

 ⊥
 v′x

−v′t


~A =

 u

v

 ⊥
 u′x

−u′t

 ⇒

⇒

(
v′x

−v′t

)
n
(

u′x

−u′t

)
⇒ C(t, x)

(
u′x

−u′t

)
=

(
v′x

−v′t

)
(3.74)
=

(
u′t

−v′t

)
⇒


u′t = Cu′x

v′x = Cu′x

v′t = Cu′t = C2u′x

⇒
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Figure 2: Vector ~A on the plane

~A

v

u

⇒



 v′x

−v′t

 =

 C

−C2

u′x ⇒ u

v

 ⊥
 v′x

−v′t


(
u

v

)
=

(
C(t, x)

1

)
f(t, x) ⇒

⇒ v = f ⇒ u = Cf = Cν

u2 − v2 = (C2 − 1)v2 = −Λ

2
= const 6= 0 ⇒

v(t, x) 6= 0

C(t, x) 6= ±1

If we suppose C2 < 1, Λ > 0 (alternative variant is C2 > 1, Λ < 0), the fields u and
v look

u =
C√

1− C2

√
Λ

2
(3.76)

v =
1√

1− C2

√
Λ

2
(3.77)

And C = C(t, x) satisfies the quasi-linear equation of the Hopf

C ′t = CC ′x (3.78)

So, we get that the gauge field with additional restriction depends on the function,
satisfying Hopf equation, and has a view

~A =

(
A0

A1

)
=

1√
1− C2

√
Λ

2

(
C(t, x)

1

)
(3.79)

Notice the relationship between time and spatial gauge fields

A0 = CA1 (3.80)
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3.3.2 Table case 2 for CP (1) with additional restriction

Consider two complex fields (3.73), where ψ = ψ(t, x), with restriction (3.72). Then (if
r1 6= r2)

Aµ =
r2

1 − r2
2

r
∂µψ =

r2
1 − r2

2

r

(
ψ′t

ψ′x

)
(3.79)
=

1√
1− C2(t, x)

√
Λ

2

(
C(t, x)

1

)
(3.81)

We investigate the case C2(t, x) < 1, Λ > 0. From (3.80) we have

ψ′t = C(t, x)ψ′x (3.82)

Where C(t, x) satisfies the Hopf equation C ′t = CC ′x. So, we can suggest that

ψ = C(t, x) (3.83)

and integrate differential equations given from (3.81)

r2
1 − r2

2

r

(
C ′t

C ′x

)
(3.79)
=

1√
1− C2(t, x)

√
Λ

2

(
C(t, x)

1

)

Define λ = r
r2
1−r2

2

√
Λ
2 

C′t
C

√
1− C2(t, x) = λ

C ′x
√

1− C2(t, x) = λ
(3.84)

Remind C2 < 1, Λ > 0,
√

1− C2 + ln
(

C
1+
√

1−C2

)
= λt+ k1(x)

C
√

1− C2 + arcsin
(

C
1+
√

1−C2

)
= 2λx+ k2(t)

(3.85)

k1(x) and k2(x) are some functions, which we get after integration. Substitute
C(t, x) = th γ(t, x) in equations of motion 1

ch γ(t,x)
+ ln thγ(t,x)

2
= λt+ k1(x)

th γ(t,x)
ch γ(t,x)

+ arcsin thγ(t,x)
2

= 2λx+ k2(t)
(3.86)

and in the Hopf equation (3.78)

γ′t = γ′xth γ (3.87)

If we take time and space partial derivatives from (3.86) and use (3.87), it can show
that th γ should be equal a constant, what leads to the contradiction. However, the situation
changes if we suppose that the Λ is a function such Λ = Λ(t, x) | ∀t, x ↪→ Λ(t, x) 6= 0. Further
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investigation is necessary.

3.3.3 Table case 4 for CP (1) with additional restriction(
A0

A1

)
=

1√
1− C2(t, x)

√
Λ

2

(
C(t, x)

1

)
=

(
(ρ2

1 − ρ2
2)ϕ′t

(ρ2
1 − ρ2

2)ϕ′x

)
From (3.80)

ϕ′t = Cϕ′x (3.88)

If we choose ϕ = C,then (3.88) is fulfilled and

n1 = ρ1e
iα+iC (3.89)

n2 = ρ2e
iα−iC (3.90)

The system of equations of motion has the view

(∂µα∂µα− Λ) cos α + �α sinα− ∂µC∂µC cos 3α = 0

−� C cosα + 3∂µα∂µC sinα− ∂µα∂µC sin 3α = 0

−� α cos α + (∂µα∂µα− Λ) sinα− ∂µC∂µC sin 3α = 0

3∂µα∂µC cosα + �C sinα + ∂µα∂µC cos 3α = 0

(3.91)

Define ς = ∂µα∂µα− Λ and rewrite the system in the matrix form
ς �α −∂µC∂µC 0

�α −ς 0 ∂µC∂µC

3∂µα∂µC �C ∂µα∂µC 0

�C −3∂µα∂µC 0 ∂µα∂µC




cos α

sinα

cos 3α

sin 3α

 = 0 (3.92)

The system has a block structure. Such matrix form with nonlinear vectors is re-
markable.

3.3.4 Possible nontrivial topological charge of gauge Hopf field

In spite of it hasn’t been picked up relevant functions n1 and n2, satisfying equations of
motion and giving certain Aµ (AµAµ = Λ), we can explore corresponding topological current

Fµν =

(
0 F01

−F01 0

)
The case C2 < 1, Λ > 0(

A0

A1

)
=

1√
1− C2(t, x)

√
Λ

2

(
C(t, x)

1

)
(3.93)
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F01 = − C ′x√
1− C2(t, x)

√
Λ

2
(3.94)

Q =

ˆ

R2

dt dx εµνFµν = −
√

2Λ

ˆ

R2

dt dx
C ′x√

1− C2(t, x)
=

Q = −
√

2Λ

ˆ

R

dt (arcsinC(t,∞)− arcsinC(t,−∞)) (3.95)

The case C2 > 1, Λ < 0. We change Λ→ −Λ and rewrite

~A =

(
A0

A1

)
=

1√
C2(t, x)− 1

√
Λ

2

(
C(t, x)

1

)
(3.96)

where C ′t = CC ′x.

F01 = − C ′x√
C2(t, x)− 1

√
Λ

2
(3.97)

Q =

ˆ

R2

dt dx εµνFµν = −
√

2Λ

ˆ

R2

dt dx
C ′x√

C2(t, x)− 1
=

Q = −
√

2Λ

ˆ

R

dt ln

[
C(t,∞) +

√
C2(t,∞)− 1

C(t,−∞) +
√
C2(t,−∞)− 1

]
(3.98)

(3.95) and (3.98) can not be zero in depends on the choice C(t, x). These reasons
point out to topologically nontrivial set solutions in 1+1 dimensions.
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Conclusion
In this work, we investigate nonlinear CP (N − 1) and its particular solutions in classic
field theory. We described the model through the matrix form, defined the central cases,
and investigated which solutions can correspond in every situation. The obtained results
represent extreme cases.

There is a more detailed research of the 1+1 dimension, in which we focused on three
specific cases. The first case represents the time-harmonic oscillations.

• Constants of integration corresponding Hamiltonian density obtained;

• the lack of mixing between real and imaginary parts of the fields leads to the harmonic
oscillator;

• "uniform" mixing between real and imaginary parts of fields occurs with the same for
all fields frequency and leads to the harmonic oscillator;

• arbitrary mixing between real and imaginary parts of fields corresponds to the nonlinear
Ermakov equation of motion;

• the general solutions obtained.

The second case describes some solutions in CP (1). The idea grounds on the fact that
amplitudes of both fields have to be on the circle.

The third case investigates solutions in the 1+1 dimension with a fixed vector’s length
of the gauge field.

• In the 1 + 1 dimension, the gauge field depends on the function satisfying nonlinear
Hopf equation;

• arguments about the possible existence of corresponding topologically nontrivial solu-
tions lead.

Further investigation may focus on

• the search of exact solutions for topologically nontrivial fields configurations in the
third particular case, connected with the Hopf equation;

• the research of the role appeared differential equations in the model;

• the investigation of extreme cases for higher dimensions;

• the link of obtained solutions with quantum theory.
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