ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования «Московский физико-технический институт (Государственный университет)»

Кафедра теоретической астрофизики и квантовой теории поля

Киральный Вихревой Эффект для фотонов.

(выпускная квалификационная работа магистра)

Выполнил:

студент группы M02-821 Васильев Алексей Игоревич

Научный руководитель:

д.ф.-м.н., Захаров В. И.

Долгопрудный 2020

Содержание

1	Вве	едение	3
2	Киј	Киральный Вихревой Эффект для Фермионов	
	2.1	Вклад μ^2 . Гидродинамика	9
	2.2	Вклад T^2 . Смешанная аномалия	12
3	Киральный Вихревой эффект для фотонов 10		
	3.1	Фотонная Киральная Гравитационная Аномалия	16
	3.2	Выводы КВЭ для плоского пространства.	
		Формулы Кубо	22
	3.3	Вывод из кинетических соображний	24
	3.4	Результат для гравитационной аномалии. Зависимость от	
		спина	27
	3.5	Отношение киральных вихревых эффектов для спинов $S=$	
		$1/2, S = 1 \dots \dots$	28
	3.6	Статистический подход: физика равновесия	30
	3.7	Еще о сравнениях с другими подходами	33
	3.8	Случай больших значений спина	35
	3.9	О дуальности подходов	36
4	Зак	алючение	37
Cı	Список литературы		38

1 Введение

Данный диплом посвящен физике киральных эффектов. Тема киральных эффектов – область крайне разветвленная с очень большим объемом литературы. Естественно, в нашей работе пойдет речь об очень частных аспектах общей тематики. Во введении мы кратко обрисуем место вопросов, затронутых в дипломе, на общей карте теоретической физики.

Простейший случай реализации киральной симметрии- теория свободных безмассовых фермионов. Пусть безмассовая дираковская частица описывается полем Ψ . Киральная симметрия есть симметрия лагранжиана относительно фазовых преобразований поля Ψ :

$$\Psi \to \exp(i\alpha)\Psi$$
, $\Psi \to \exp(i\alpha\gamma^5)\Psi$, (1)

где α - фаза, γ^5 - матрица Дирака. Соответственно, есть сохраняющиеся векторный и аксиальный токи:

$$J_V^{\mu} = \bar{\Psi}\gamma^{\mu}\Psi , \qquad J_A^{\mu} = \bar{\Psi}\gamma^{\mu}\gamma^5\Psi.$$
⁽²⁾

Аксиальный ток сохраняется только для случая m = 0. Стандартные учебники квантовой теории поля в первую очередь рассматривают случай слабой константы связи, так что фермионные поля Ψ могут быть отождествлены с полями описывающими наблюдаемые частицы. Киральная симметрия является неотъемлемой частью теории элементарных частиц со времени открытия структуры слабых взаимодействий в 1957 году.

Относительно недавно, то есть на протяжении примерно последних десяти лет, интенсивно развивается область моделей с киральной симметрией в режиме сильной связи (сборник обзоров [1]). В этом случае речь может идти о жидкости, а безмассовость будет относиться к ненаблюдаемым элементарным составляющим. Относительно взаимодействия составляющих предполагается только, что оно сохраняет свойство киральной инвариантности, которое проще всего обсуждать на примере свободных полей.

Связь между квантовой теорией поля и статистической физикой (ко-

торая занимается теорией равновесных жидкостей) выявилась особенно ясно при обсуждении киральных эффектов (см. [1]), которые интересны потому, что являются макроскопическим проявлением квантовой аномалии.

Впервые это утверждение было сформулировано в работе Сона и Суровки [2]. В этой работе рассматривается равновесное движение жидкости с киральным дисбалансом, или аксиальным химпотенциалом отличным от нуля, $\mu_5 \neq 0$, и в присутствии внешних электромагнитных полей, $\vec{E}, \vec{B} \neq 0$. Используется гидродинамическое приближение, или разложение по производным и пренебрегая взякостью, было получено, что возникают макроскопические токи пропорциональные C_{anom} . В частности, возникает ток завихренности: $j_{vortcal}^{\alpha,5} = C_{anom}\mu^2\omega^{\alpha}$ где завихренность – $\omega^{\alpha} = (1/2)\epsilon^{\alpha\beta\gamma\delta}u_{\beta}\partial_{\gamma}u_{\delta}$, u_{α} - 4-скорость элемента жидкости. Или ток текущий вдоль внешнего магнитного поля $j_{el}^{\alpha} = C_{anom}e^2\mu_5\epsilon^{\alpha\beta\gamma\delta}u_{\beta}\partial_{\gamma}A_{\delta}$ где A_{δ} -вектор-потенциал электромагнитного поля. Отметим, что заряды, отвечающие этим токам, отличны от нуля только при наличии винтовых конфигураций поля скоростей или электромагнитных полей. Например, $j_{vortical}^{0} \sim \vec{v} \cdot \vec{\Omega}$, где \vec{v} и $\vec{\Omega}$ обычная и угловая скорости, соответственно.

В основном, мы будем иллюстрировать наши утверждения на примере вихревого кирального эффекта:

$$\vec{J}_{CVE} = \frac{\mu_R^2}{4\pi^2} \vec{\Omega} \quad , \tag{3}$$

полученный еще Виленкиным [3]. Формула (3) отвечает случаю одного фундаментального вейлевского фермиона.

Как видно из примера (3), ток, ассоциированный с аномалией, представляет собой полином по термодинамическим виличинам (μ, T, Ω). Эта полиномиальность является отражением полиномиальности треугольной аномалии в терминах электромагнитного поля. Связь между треугольной аномалией в теории поля и полиномиальностью интегралов Зоммерфельда (то есть, определенных интегралов от распределения Ферми) обсуждалась недавно в ряде работ, см., в особенности, [4,24,25].

В частности, непосредственное статистическое усреднение сводит проекцию тока частиц на ось вращения J_N к следующему выражению:

$$J_N = \frac{1}{4\pi^2} \int_{-\infty}^{+\infty} \epsilon^2 d\epsilon \left(\frac{1}{1 + e^{\beta(\epsilon - (\mu + \Omega/2))}} - \frac{1}{1 + e^{\beta(\epsilon - (\mu - \Omega/2))}} \right) , \qquad (4)$$

где J_N выписан для случая одного правого фермиона, $\beta = 1/T$, где T- температура. Первый член в скобках отвечает току частиц, а второй - античастиц. Прямое интегрирование выражения (4) сводит его к (3). Детали вывода можно найти в [5].

Подчеркнем, что статистический подход включает усреднение по распределению Бозе или Ферми, то есть по распределению невзаимодействующих частиц. Ответ же для тока совпадает с ответом, полученным в гидродинамическом приближении, или в режиме сильной связи. Это совпадение представляет собой термодинамический аналог теоремы Адлера-Бардина в теории поля.

За последние год-два формируется новое направление, которое, по нашему мнению, станет следующим шагом в развитии теории киральных эффектов. Речь идет о *киральных эффектах и гравитационных взаимодействиях*.

В рамках статистического подхода, в число стандартных термодинамических величин стали включать ускорение, \vec{a} , см., в частности, [6]. Общепринято, что при построении оператора плотности $\hat{\rho}$ вводится эффективное взаиможействие:

$$\delta \hat{H} \sim \vec{M} \cdot \vec{\Omega} \tag{5}$$

где \vec{M} оператор углового момента, $\vec{\Omega}$ - вектор угловой скорости. Довольно очевидно, что из соображений Лоренц-инвариантности следует добавить:

$$\delta \hat{H} \sim \vec{K} \cdot \vec{a} , \qquad (6)$$

 $ec{K}$ - оператор лоренцова буста [6]. Примеры расчета киральных эффектов,

включающих ускорение, с использованием техники оператора Зубарева [7], см. в [8].

Далее, как только возникают эффекты с ускорением в плоском пространстве, естественно попытаться связать их с эффектами во внешнем гравитационном поле, пользуясь принципом эквивалентности. И, действительно, результаты статистических расчетов можно сопоставить с результатами расчетов в пространстве Риндлера [9]. Результаты, полученные в рамках этих двух подходов, оказываются совпадающими друг с другом.

Наконец, можно говорить о связи эффектов во внешнем гравитационном поле и температурных эффектах. Примером такой связи является хорошо известный эффект Унру. Именно, можно показать, что наблюдатель, движущийся с ускорением *a* воспринимает вакуум пространства Минковского как среду с температурой *T*_U равной

$$T_U = \frac{a}{2\pi} \quad . \tag{7}$$

Таким образом возникает триада эффектов, или теорий, связанных между собой:

(external gravitational field)
$$\sim$$
 (acceleration in flat space) \sim
 \sim (finite temperature, flat space).

Замечательный пример такой триады (или три-ального описания) приведен в работе [4].

Рассматривая теорию кирального фермиона, взаимодействующего со внешним гравитационным полем можно получить в однопетлевом приближении (см., например, [10]) следующее выражение для киральной аномалии:

$$\nabla_{\mu}J_{N}^{\mu} = -\frac{1}{384\pi^{2}}R_{\mu\nu\kappa\lambda}\tilde{R}^{\mu\nu\kappa\lambda} , \qquad (8)$$

где J_N^{μ} тот же ток, который входит в соотношение (4), $R_{\mu\nu\kappa\lambda}$ - тензор Римана, $R^{\mu\nu\kappa\lambda} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} R_{\rho\sigma}^{\kappa\lambda}$. Можно сказать, что это соотношение представляет собой первый член в триаде (8)- квантовая теория поля во внешнем гравитационном поле.

Переход ко второму члену триады (8) происходит вычислением тока числа фермионов, генерируемого гравитационной аномалией (8) в поле вращающейся черной дыры. Предполагается, что ток на горизонте равен нулю и вычисляется ток на большом расстоянии, где метрика становится плоской. Показано, что этот ток равен:

$$J_N = \frac{1}{48\pi^2} a_{black\ hole}^2 \Omega_{black\ hole} \ , \tag{9}$$

где $a_{black\ hole}$ -ускорение на горизонте черной дыры, $\Omega_{black\ hole}$ - угловая скорость вращения на поверхности черной дыры.

Переход к третьему члену триады (8) происходит отождествлением:

$$\frac{a_{black\ hole}}{2\pi} \to T , \quad \Omega_{black\ hole} \to \Omega .$$
 (10)

Замечательным образом, воспроизводится соотношение (4) первоначально выведенное в плоском пространстве при ненулевой температуре. Таким образом, на совершенно новом материале подтверждена дуальность описания явлений в терминах температурной квантовой теории поля в плоском прострастве и в терминах квантовой теории поля во внешнем гравитационном поле.

Вместе с тем–и здесь мы подходим к теме диплома–есть основания думать, что наблюдение работы [4] не обобщается на частицы высших спинов. Простейшия аргументация, предложенная В.И. Захаровым, Г.Ю. Прохоровым и О.В. Теряевым, состоит в следующем [36]. Киральная гравитационная аномалия (8) известна для безмассовых частиц любого спина и диктует кубическую зависимость от спина частиц S, чего никак нельзя получить из температурной квантовой теории поля, ведь температура выявляет число степеней свободы, и число степеней свободы для безмассовых частиц равно двум, независимо от спина. Из высших спинов, самый простой случай спина S = 1, или фотона. Естественно поэтому обратиться к детальному рассмотрению указанной проблемы высших спинов на примере фотона. Более того, существует литература [13–16, 18, 19], посвященная киральному вихревому эффекту. Нашей задачей является в перву очередь обзор этой литературы в контексте сравнения полученных результатов с предсказаниями, основанными на гравитационной аномалии.

В дипломной работе представлен как краткий обзор литературы, так и оригинальные утверждения по поводу самих вычислений. В литературе одна и та же проблема обсуждается иногда с разных точек зрения.

2 Киральный Вихревой Эффект для Фермионов

2.1 Вклад μ^2 . Гидродинамика

Киральным Вихревым эффектом (КВЭ) называют поток киральности безмассовых фермионов вдоль вектора угловой скорости $\vec{\Omega}$ во вращающейся среде. Эффект был впервые предсказан Виленкиным в [3], который в своей работе получил для системы с одним Вейлевским фермионом ток числа частиц:

$$\vec{j}^N = \frac{1}{12} T^2 \vec{\Omega} \tag{11}$$

где T - температура.

Введение в систему взаимодействия, т.е. химического потенциала μ , связанного с зарядом Q^N , который в свою очередь относится к току j^N , ведет к появлению еще одного вклада, квадратичного по μ :

$$\vec{j}^{N} = \left(\frac{1}{12}T^{2} + \frac{\mu^{2}}{2\pi^{2}}\right)\vec{\Omega}$$
(12)

В своей работе [2] Сон и Суровка рассматривали киральные эффекты с точки зрения релятивистской гидродинамики, для идеальной жидкости.

Используя гидродинамические величины, их законы сохранения и разложение по градиентам в этой работе были получены вклады-модификации к гидродинамическим уравнениям в присутствии квантовой аномалии. При ненулевом химическом потенциале был получен вклад в ток, индуцированный завихренностью, со своим транспортным коэффициентом. Более того, коэффициент, характеризующий этот эффект, полностью зафиксирован выражением для аномалии в данной конкретной системе. Другими словами, коэффициент перед членом $\mu^2 \vec{\Omega}$ выражается через коэффициент в аномальном законе сохранения, которая для системы с одним вейлевским фермионом выглядит как:

$$\partial_{\mu}j^{\mu N} = -\frac{1}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma} \tag{13}$$

где $F_{\alpha\beta}$ - тензор напряженности электромагнитного поля.

Однако, это не значит что с членом $\mu^2 \vec{\Omega}$ все просто и понятно, несмотря на кажущуюся простоту вывода оного в [2].

Для иллюстрации достаточно заметить, что при "выключенных"внешних полях, когда вышенаписанное выражение для аномалии обратится в ноль, этот вклад выживет. Что говорит о наличии дополнительных законов сохранения.

Переход в гидродинамический режим может быть осуществлен при помощи подстановки [17]:

$$eA_{\mu} \longrightarrow eA_{\mu} + \mu u_{\mu} \tag{14}$$

где A_{μ} - внешние электромагнитные поля, u_{μ} - поле 4-скоростей элементов жидкости как функция от координат.

Так, используя эту подстановку в выражение для аксиального тока вдоль вектора завихренности жидкости $\omega_{\mu} = \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} u^{\nu} \partial^{\alpha} u^{\beta}$ вклад

$$\delta j^A_\mu = \sigma_\omega \omega_\mu \tag{15}$$

при ненулевой проводимост
и $\sigma_\omega \neq 0$ и ненулевом хим. потенциале $\mu \neq 0$ получим

$$\sigma_{\omega} = \frac{\mu^2}{2\pi^2} \tag{16}$$

то есть получаем ни что иное как μ^2 вклад в киральный вихревой эффект. Стоит сказать, что T^2 вклад такой подстановкой не охватывается.

Если восстановить выражение для аксиального тока, оно будет выглядеть приблизительно следующим образом:

$$j^{A}_{\mu} = n^{A} u_{\mu} + C \mu^{2} \omega_{\mu} + O(e)$$
(17)

здесь $n^A = \frac{1}{2}(n_R - n_L)$ - плотность составляющих частей жидкости, ки-

рального заряда. С - коэффициент в выражении для аномалии.

Уравнение (17), вообще говоря, близко к тому, что было получено в работе Сона и Суровки [2]. Теперь очевидно, что при выключении внешних полей, когда аксиальный ток перестанет быть аномальным и его дивергенция обратится в ноль, второй член в уравнении (17), киральный вихревой эффект, выживет. И более того, он будет прямо пропорционален коэффициенту, "задающему" эту самую аномалию.

Помимо этого, первый член в уравнении (17) есть "наивный" аксиальный ток, он, конечно же, сохраняется отдельно. А это значит, что раз при выключенных внешних полях сохраняется весь аксиальный ток, то вклад $\delta j^A_\mu = C \mu^2 \omega_\mu$ тоже должен сохраняться отдельно. Это говорит о том, что в таком расссмотрении идеальной жидкости появляется дополнительная симметрия.

"Выключение"электро-магнитного взаимодействия, то есть устремление постоянной $\alpha_{el} \rightarrow 0$, вообще говоря, может привести к нестабильностям в киральной среде [26]. В этой работе показано, что такое устремление константы электро-магнитного взаимодействя к нулю может заставить киральную жидкость с ненулевым химическим потенциалом может перейти в ассиметричное состояние содержащее вихри.

Однако, в этом рассмотрении электромагнитное поле не является динамическим, а значит мы можем пренебречь электромагнитным взаимодействием составляющих элементов жидкости, как и возбуждением электромагнитных волн в среде. В этом случае устремление константы взаимодействия к нулю не приведет к изменению свойств среды.

Тем не менее, даже в случае, когда электромагнитное поле является внешним и нединамическим, появление нестабильностей в жидкости все же возможно [26]

2.2 Вклад T^2 . Смешанная аномалия

Отношение T^2 вклада в выражение для Кирального Вихревого Эффекта к аномалии долгое время оставалось неясным. Подстановка перехода в гоидродинамический режим (14), как писалось выше, не охватывает температурные вклады, а значит требудется другой подход к проблеме.

Как раз его в своей работе [4] предложил М. Stone. Идея здесь заимствована из работ, соотносящим излучение Хокинга, полученное благодаря термодинамическому рассмотрению физики черных дыр и аномалии теории поля.

Предлагается рассматривать пространство-время с границей – горизонтом вращающейся черной дыры. На таком фоне, выражение для дивергенции аксиального тока для системы из одного правого Вейлевского фермиона единичного заряда в присутствии внешнего гравитационного поля примет вид:

$$\nabla_{\mu}J_{N}^{\mu} = -\frac{1}{32\pi^{2}}\frac{\epsilon^{\mu\nu\rho\sigma}}{\sqrt{-g}}F_{\mu\nu}F_{\rho\sigma} - \frac{1}{768\pi^{2}}\frac{\epsilon^{\mu\nu\rho\sigma}}{\sqrt{-g}}R^{\alpha}_{\ \beta\mu\nu}R^{\beta}_{\ \alpha\rho\sigma}$$
(18)

где $F_{\mu\nu}$ есть тензор напряженности электро-магнитного поля, g – след метрического тензора, а $R^{\alpha}_{\ \beta\mu\nu}$ - соответственно тензор Римана.

Таким образом, первый член в (18) являет собой привычное выражение для т.н. киральной аномалии, а интересовать нас будет второй член, а конкретно, коэффициент перед ним.

Утверждается, что вдали от горизонта, где второй вклад, гравитационная киральная аномалия

$$\nabla_{\mu}J_{N}^{\mu} = -\frac{1}{768\pi^{2}} \frac{\epsilon^{\mu\nu\rho\sigma}}{\sqrt{-g}} R^{\alpha}_{\ \beta\mu\nu} R^{\beta}_{\ \alpha\rho\sigma}$$
(19)

зануляется, присутствует поток киральности, который и будет тем самым вкладом $T^2 \vec{\Omega}$ в выражение для КВЭ.

В качестве внешнего гравитационного поля используется аналог вращающейся черной дыры Керра. Сама метрика в координатах Бойера — Линдквиста $(t, r, \phi, \theta), \cos \theta = \chi$ выглядит следующим образом:

$$ds^{2} = -\left(1 - \frac{2mr}{r^{2} + a^{2}\chi^{2}}\right)dt^{2} + \left(\frac{r^{2} + a^{2}\chi^{2}}{r^{2} + a^{2} - 2mr}\right)dr^{2} - \frac{4amr(1 - \chi^{2})}{r^{2} + a^{2}\chi^{2}}dtd\phi + (20)$$

$$+(1-\chi^2)\Big(r^2+a^2+\frac{2a^2mr(1-\chi^2)}{r^2+a^2\chi^2}\Big)d\phi^2+(r^2+a^2\chi^2)\frac{1}{1-\chi^2}d\chi^2$$

Где *т* есть масса черной дыры, а *та* – ее угловой момент.

У такой черной дыры, как известно, есть два горизонта: внутренний и внешний, задающихся уравнениями:

$$r_{\pm} = m \pm \sqrt{m^2 - a^2} \tag{21}$$

Внешний горизонт: $r_{+} = m + \sqrt{m^2 - a^2}$, является горизонтом событий, на котором "заключенные" фотоны будут двигаться на постоянном r и угле θ , причем с постоянной угловой скоростью

$$\Omega_{+} \equiv \frac{d\phi}{dt} = \frac{a}{r_{+}^{2}} \tag{22}$$

Последнее равенство можно получить подстановкой постоянных $r = r_+$, и θ в выражение $ds^2 = 0$, справедливое для фотонов и решением получившегося квадратного уравнения на $\frac{d\phi}{dt}$.

Для Керровской черной дыры поверхностная гравитация κ_+ на внешнем горизонте представляется разностью поверхностной гравитации для решения Шварцшильда $g = \frac{1}{4m}$ и постоянной пружины для вращающейся черной дыры $k \equiv m\Omega_+^2$.

Это выражение дает Хокинговскую температуру Керровской черной дыры

$$T_H = \frac{\kappa_+}{2\pi} \tag{23}$$

А значит, черная дыра Керра наделена не только вращением, но и температурой. Для того, чтобы проиллюстрировать выбор модифицированной метрики, необходимо сначала переписать метрику Керра в известных терминах:

$$\Delta = r^2 + a^2 - 2mr \tag{24}$$

$$\rho^2 = r^2 + a^2 \cos^2\theta \tag{25}$$

и форм:

$$\omega = \frac{r^2 + a^2}{\rho^2} (dt - asin^2 \theta d\phi)$$
(26)

$$\tilde{\omega} = \frac{r^2 + a^2}{\rho^2} (d\phi - \frac{a}{r^2 + a^2} dt)$$
(27)

В таких терминах метрика Керра принимает вид:

$$ds^2 = -\frac{\Delta\rho^2}{(r^2 + a^2)}\omega^2 + \frac{\rho^2}{\Delta}dr^2 + \rho^2 d\theta^2 + \rho^2 sin^2\theta\tilde{\omega}^2$$
(28)

Далее, конструируется метрика, мотивированная Керровской, но с использованием переменной z, измеряющей расстояние от горизонта и функции f(z) равной единице на больших значениях аргумента и нулю на горизонте.

$$ds^{2} = -f(z)\frac{(dt - \Omega r^{2}d\phi)^{2}}{(1 - \Omega^{2}r^{2})} + \frac{1}{f(z)}dz^{2} + dr^{2} + \frac{r^{2}(d\phi - \Omega dt^{2})}{(1 - \Omega^{2}r^{2})}$$
(29)

Она, очевидно, отвечает вращающейся черной дыре и на больших значениях z, где f(z) = 1 превращается в $ds^2 \rightarrow -dt^2 + dz^2 + dr^2 + r^2 d\phi^2$ – метрике (асимптотически) плоского пространства в цилиндрических координатах. В такой метрике вся кривизна пространства-времени сконцентрирована вокруг горизонта, вращающегося с угловой скоростью Ω .

Посмотрим на то, как будет выглядеть правая часть (19) в такой метрике (с точностью до $O(\Omega^3)$):

$$\frac{\epsilon^{\mu\nu\rho\sigma}}{4}R^{\alpha}_{\ \beta\mu\nu}R^{\beta}_{\ \alpha\rho\sigma} = 2r\Omega f'(z)f''(z) = \frac{\partial}{\partial z}(\Omega r[f'(z)]^2)$$
(30)

Поделив на $\sqrt{|g|} = r$ заметим, что получили источник аксиального тока нашей релятивистской жидкости в области, окружающий горизонт, не зависящий от r. Полагая, что ток распространяется только по направлению z и накладывая граничное условие отсутствия тока на горизонте $J^{z}(z_{H}) = 0$ можем проинтегрировать уравнение по z получив:

$$J_N^z = \frac{1}{12} T_H^2 \Omega \tag{31}$$

при $z \to \infty$, то есть вдали от горизонта. Это и есть ожидаемый температурный вклад в ток КВЭ, при условии, что температура заменена на Хокинговскую температуру черной дыры.

3 Киральный Вихревой эффект для фотонов

3.1 Фотонная Киральная Гравитационная Аномалия

Обратимся теперь к Киральной аномалии для фотонов. Понятие киральности для фотонов хорошо известно. Право- и лево- поляризованные фотоны можно называть киральными состояниями, ведь они соответсвуют проекции равной 1 или -1 спина фотона на его импульс.

Как известно, киральность фотонов измеряется зарядом

$$Q = \int d^3x K^0 \tag{32}$$

где ток K^{μ} задается выражением:

$$K^{\mu} = -\frac{1}{\sqrt{-g}} \epsilon^{\mu\nu\rho\sigma} A_{\nu} \partial_{\rho} A_{\sigma}$$
(33)

где A – электромагнитный вектор-потенциал, а g - детерминант метрического тензора (чуть ниже поясним, для чего эта формула записана сразу в криволинейных координатах). Этот ток нормирован таким образом, что $Q_p^A h = \pm 1$ соответсвенно для лево и право поляризованных фотонов.

Матричный элемент оператора кирального заряда будет считать разность между числом право- и лево- поляризованных фотонов $n_{R,L}$:

$$\langle |\int d^3x \epsilon^{0ijk} A_i \partial_j A_k | \rangle = n_R - n_L \tag{34}$$

Следует также заметить, что ток K^{μ} – величина не калибровочно инвариантная, однако при этом заряд, ему соответствующий, напротив, калибровочно инвариантен.

Этого достаточно для того, чтобы последовательно ввести киральность для случая невзаимодейсвтующих фотонов. Далее, можно использовать принцип эквивалентности и обощить случай свободных невзаимодействующих фотонов на взаимодействие их с внешним гравитационным полем. По этой причине ток K^{μ} выше и записан сразу в криволинейных координатах.

Ток K^{μ} не является Нетеровским током и поэтому автоматически не сохраняется. На классическом уровне имеем:

$$\langle \nabla_{\mu} K^{\mu} \rangle = -\frac{1}{2} \left\langle F^{\mu\nu} \tilde{F}_{\mu\nu} \right\rangle \tag{35}$$

Здесь и далее приняты обозначения дуальных тензоров

$$\tilde{F}^{\mu\nu} = \frac{1}{2\sqrt{-g}} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma} \quad , \quad \tilde{R}^{\mu\nu\alpha\beta} = \frac{1}{2\sqrt{-g}} \epsilon^{\mu\nu\rho\sigma} R_{\rho\sigma}^{\ \alpha\beta} \tag{36}$$

При этом можно показать, что на первый взгляд из соображений киральности для фотонов во внешнем гравитационном поле ожидание $\langle -\frac{1}{2}F^{\mu\nu}\tilde{F}_{\mu\nu}\rangle$ зануляется и

$$\left\langle \nabla_{\mu}K^{\mu}\right\rangle_{naive} = 0 \tag{37}$$

В этом смысле прослеживается аналогия со случаем безмассовых заряженных фермионов во внешнем электромагнитном поле. Ненулевое ожидание $\langle \nabla_{\mu} K^{\mu} \rangle_{naive} \neq 0$ можно называть киральной аномалией.

Помимо этого, существует также бозонная киральная гравитационная аномалия, в результате которой значение ожидания дивергенции тока K^{μ} принимает форму:

$$\langle \nabla_{\mu} K^{\mu} \rangle = -\frac{1}{2} \langle F^{\mu\nu} \tilde{F}_{\mu\nu} \rangle = -\frac{1}{96\pi^2} R_{\mu\nu\alpha\beta} \tilde{R}^{\mu\nu\alpha\beta}$$
(38)

Появление такого вклада ожидаемо, ведь вклад пропорциональный $R\bar{R}$ в фермионной аномалии возникает ввиду взаимодействия спина с гравитационным полем. Такое взаимодействие не привязано к какой либо конкретной статистике, а значит имеет место быть и для бозонов тоже.

И правда, киральная гравитационная аномалия для безмассовых частиц спина $\frac{1}{2}$ и спина 1 пропорциональна одной и той же величине $R\tilde{R}$. В случае, рассмотренном в предыдущей секции внешнее гравитационное поле есть поле вращающейся черной дыры, а ее воздействие на систему сводится к универсальному геометрическому фактору.

Вообще говоря, о выводе выражения гравитационной аномалии для фотонов следует поговрить дополнительно. Вывод аналогичен низкоэнергетическому выводу киральной аномалии для фермионов (спина 1/2).

Следует рассмотреть переход тока K_{μ} в, теперь, два гравитона в аннигиляционном канале. Для гравитонов на массовой поверхности такой переход описывается форм-фактором:

$$\langle 0| K_{\mu} | 2g \rangle = f(q^2) q_{\mu} R_{\nu\alpha\beta\xi} \tilde{R}^{\nu\alpha\beta\xi}$$
(39)

Здесь q_{μ} есть 4-импульс, переданный током K_{μ} . Тот факт, что мы требуем наличие калибровочной инвариантности обуславливает существование только одного независимого форм-фактора.

Далее, для функции $f(q^2)$ используется дисперсионное соотношение. Мнимая часть $f(q^2)$ определяется древесными графиками. В классическом приближении ти графики удовлетворяют всем требованиям симметрии теории. К примеру, сохранение тока K_{μ} для случая движения во внешнем гравитационном поле означает равество нулю $f(q^2)$.

При вычислении мнимой частицы оказывается, что для всех частиц на массовой поверхности знаменатель одного из пропагаторов обратится в ноль, что в свою очередь означает что мнимая часть в итоге вовсе не определена.

У возникшей проблемы есть решение – доопрелеляем мнимую часть введя малую, инфинитезимальную массу гравитона. Тогда мнимая часть форм-фактора $f(q^2)$ выразится следующим образом:

$$Imf(q^2) = \lim_{m^2 \to 0} \left(\frac{1}{128\pi q^2} v^2 (1-v^2) ln \frac{1+v}{1-v} \right) = \frac{1}{96\pi} \delta(q^2)$$
(40)

Что как раз приводит нас к ответу:

$$\langle \nabla_{\mu} K^{\mu} \rangle = -\frac{1}{96\pi^2} R_{\mu\nu\alpha\beta} \tilde{R}^{\mu\nu\alpha\beta}$$
(41)

Даже в пределе невзаимодействующих частиц регуляризация массой приводит к нарушению сохранения киральности фотона. Существует, однако, работа [12], в которой автор обсуждает другую возможность формулировки теории. В ней киральное вращение есть симметрия действия. В терминах вещественного вектор-потенциала такая формулировка невозможна.

Поэтому перейдем к формулировке, воввлекающей в использование спинорные индексы. Как известно, для того чтобы перейти к спинорным индексам $\alpha \dot{\alpha}$ для произвольного вектора b_{μ} необходимо воспользоваться формулой:

$$b_{\alpha\dot{\alpha}} \equiv (\sigma^{\mu})_{\alpha\dot{\alpha}} b_{\mu} \tag{42}$$

где $\sigma^{\mu} \equiv (I, \vec{\sigma}),$ I – единичная матрица, а $\vec{\sigma}$ – матрицы Паули.

На языке спиноров, поле $A_{1\dot{1}}$ выступает в качестве Лагранжевого множителя. Калибровочное условие при этом может быть выбрано как $A_{2\dot{2}} =$ 0. Таким образом, остаются две независимые компоненты: $A_{1\dot{2}}$ и $A_{\dot{2}1}$.

Действие теперь запишется следующим образом:

$$S = \int d^4 x \overline{A} \Box A \tag{43}$$

здесь $A_{21} = \sqrt{2}A$, а $\overline{A} = A^*$. Действие при этом будет инвариантно относительно глобальных поворотов фазы:

$$A \to A e^{i\varphi}, \quad \overline{A} \to \overline{A} e^{-i\varphi}$$
 (44)

В итоге получится, что ток K^{μ} будет выглядеть как нетеровский. Однако, поле A и \overline{A} не является Лоренц скаляром, поэтому использование этих полей вне массовой поверхности представляет неудобства.

Исходя из всего вышеперечисленного, получение результата для киральнойгравитационной аномалии для фотонов кажется процедурой однозначной

$$\langle \nabla_{\mu} K^{\mu} \rangle = -\frac{1}{96\pi^2} R_{\mu\nu\alpha\beta} \tilde{R}^{\mu\nu\alpha\beta}$$
(45)

Однако, ниже приведем несколько аргументов, которые, на первый взгляд, подвергают ее и результат сомнению:

- Во-первых, когда мы вводим ненулевую массу для фотона, мы неизбежно меняем количество степеней свободы у векторной частицы. Конесно, нас интересует случай нулевой массы, поэтому встает вопрос, насколько правомерен и непрерывен будет переход к нулевой массе.
- Во-вторых, мы уже несколько раз упоминали о проблеме калибровочной неинвариантности тока K_µ вне массовой поверхности.

В работе Захарова, Хрипловича и др. сформулирована эта самая "разветвление": с одной стороны, введение инфинитезимальной массы позволяет нам построить Лоренц ковариантный формализм, но такая регуляризация при этом нарушает сохранение киральности; или же можно работать с двумя состоояниями фотона и вне массовой поверхности, однако при этом потеряется Лоренц ковариантность. Мы не единственные, у кого возникает такая проблема. В работах [15], [19], написанных сравнительно недавно, авторы встречают похожие проблемы.

Однако, в работе [12] проанализирован этот вопрос для части конкретного вычисления аномалии (41). Утверждается, что величина $Imf(q^2)$ в уравнении (40), которая и определяет конечный ответ для аномалии на самом деле калибровочно инвариантна. То есть, ответ не изменяется при переходе от теории векторного поля Прока к какой-либо другой. Добавление следующего члена в действие:

$$\Delta S = -\frac{1}{2}\xi \int d^4x \sqrt{-g} (\nabla_{\mu} A^{\mu})^2 + S_m$$
(46)

(здесь ξ – калибровочный параметр, S_m – массовый член) никак не меняет значение $Imf(q^2)$.

Более того, введение нековарантной калибровки:

$$\Delta S = -\frac{1}{2} \int d^4 x (\xi (\partial_\mu A^\mu)^2 - m^2 A_\mu A^\mu)$$
(47)

Также не поменяет значение $Imf(q^2)$.

Таким образом продемонстрироваа калибровочная инвариантность ответа. Следовательно, введение инфинитезимальной массы на самом деле сглаживает инфракрасную сингулярность и не меняет число эффективных степеней свободы.

3.2 Выводы КВЭ для плоского пространства. Формулы Кубо.

Вообще говоря, существует много способов получить выражение для Кирального Вихревого Эффекта в неискривленном пространстве-времени. В последнее время, наиболее часто-встречающийся путь – сведение к запаздывающим трехмерным (3D) функциям Грина, используя технику аналогичную оной при выведении т.н. Формул Кубо.

Конкретнее: определим проводимость σ_{Ω} выражением:

$$\vec{j}^N = \sigma_\Omega \vec{\Omega} \tag{48}$$

Тогда σ_{Ω} будет величиной, определяющейся поведением запаздывающей двух точечной функцией Грина между током j_i^N и компонентой тензора энергии-импульса T_{0j} при нулевой частоте ω и малом импульсе k_i в присутствии вращения, то есть [25]:

$$\lim_{q \to 0} G_R(\omega, k)|_{\omega=0} = i\epsilon_{ijn}k_n\sigma_\Omega \tag{49}$$

В работах [13, 14] можно найти подробные вычисления Кирального Вихревого Эффекта для систем с заряженными частицами спина 1/2 в температурной теории поля.

Уравнение (49) можно обощить на случай фотонов взаимодействующих со внешним гравитационным полем, как например в [13]. Двухпетлевой вклад в КВЭ для частиц со спином 1/2 факторизуется в произведение однопетлевой киральной аномалии и КВЭ, связанного с фотонным током K_{μ} .

Соответствующая проводимость σ_{Ω}^{γ} для тока K_{μ} теперь будет выражаться через кореллятор между уже фотонным током K_i и компонентой тензора энергии импульса T_{0j} .

В результате, получится следующее выражение для Кирального Вихревого момента для фотонов, см. [13–15] (назовем его Kubo Relation)

$$\vec{j}^{photon}_{Kubo\ relation} = \frac{1}{6} T^2 \vec{\Omega} \tag{50}$$

Легко заметить, что результат, полученный таким образом несовпадает с полученным нами ранее или, скажем, полученным Ямамото и больше эффекта для Вейлевских спиноров вдвое, а не в четверо:

$$\frac{(CVE)_{photon}|_{Kuborelation}}{(CVE)_{Weyl}} = 2$$
(51)

Упомянем и здесь, что непосредственно ток K_{μ} не калибровочно инвариантен и это делает рассуждения не такими однозначными. На самом деле, калибровочную инвариантность можно "ввести"на каждом шаге вводя нелокальность. Для фотонов на массовой поверхности существует выражение для тока в аннигиляционном канале:

$$\kappa_{\mu} = (const) \frac{q_{\mu}}{q^2} F_{\alpha\beta} \tilde{F}^{\alpha\beta}$$
(52)

где q_{μ} есть 4-импульс носимый током.

Однако, в случаях, наиболее интересных для рассмотрения, а именно:

• В пределе $q_i = 0$, $\omega \to 0$ имеем

$$\lim_{q_i=0,\omega\to 0}\kappa_0 = K_0 \tag{53}$$

и нелокальный ток сводится к той же плотности заряда K_0

• А в случае трехмерной картины будет рассматриваться предел $\omega=0,$ $q_3\to 0$ и тогда:

$$\lim_{q_3 \to 0, \omega = 0} \kappa_3 = K_3 \tag{54}$$

и ток чводится к компоненте K_3 , той же, что используется в температурной теории поля.

3.3 Вывод из кинетических соображний

Существует, однако, вывод фотонного кирального вихревого эффекта [33] за авторством Наоки Ямамото, воспроизводящий ответ, полученный нами в выводе, затрагивающем смешанную гравитационно-киральную аномалию. Приведем суть вывода и ответ:

В полуклассическом режиме поляризованные по кругу фотоны обладают фазой Берри. Используя кинетическое уравнение для таких фотонов можно получить ток, направленный вдоль вектора завихренности.

Гамильтониан системы киральных фотонов имеет вид:

$$H = \pm c \mathbf{S} \cdot \mathbf{p} \tag{55}$$

где S_i – матрицы 3х3, удовлетворяющие коммутационным соотношениям $[S_i, S_j] = i\epsilon_{ijk}S_k$, с – скорость света в вакууме.

Здесть четко прослеживается отличие от системы с фермионами, где Гамильониан выглядит как:

$$H = \pm c\sigma \cdot \mathbf{p} \tag{56}$$

а σ_i – Матрицы Паули, удовлетворяющие коммутационным соотношениям $[\sigma_i, \sigma_j] = 2i\epsilon_{ijk}\sigma_k$

Знаки \pm в формуле (55) соответствуют право- и лево- поляризованным фотонам и значениям спиральности $h = \pm 1$ соответственно.

Сфокусировавшись на право-поляризованных фотонах для простоты (ведь случай с лево-поляризованными фотонами получается из него заменой знаков) и оставив для рассмотрения только состояния с положительной энергией напишем действие:

$$I = \int dt (\mathbf{p} \cdot \dot{\mathbf{x}} - \mathbf{a}_{\mathbf{p}} \cdot \dot{\mathbf{p}} - \epsilon_{\mathbf{p}})$$
(57)

где $\mathbf{a_p}$ – калибровочное поле в импульсном пространстве – связность Берри, $\epsilon_p = |\mathbf{p}|$ – дисперсия энергии. Соответсвующая $\mathbf{a_p}$ напряженность калибровочного поля – фаза Берри выражается как:

$$\mathbf{\Omega}_{\mathbf{p}} = \nabla_{\mathbf{p}} \times \mathbf{a}_{\mathbf{p}} \tag{58}$$

и в данном случае

$$\Omega_{\mathbf{p}} = \pm \frac{\hat{\mathbf{p}}}{|\mathbf{p}^2|} \tag{59}$$

здесь опять же ± соответствует право- и лево- поляризованным фотонам.

Из действия (57) можно получить уравнения движения:

$$\dot{\mathbf{x}} = \hat{\mathbf{p}} + \dot{\mathbf{p}} \times \boldsymbol{\Omega}_{\mathbf{p}} \tag{60}$$

$$\dot{\mathbf{p}} = \mathbf{2}|\mathbf{p}|\dot{\mathbf{x}} \times \boldsymbol{\omega} + \mathbf{O}(\boldsymbol{\omega}^2) \tag{61}$$

где локальная завихренность $\omega = \frac{1}{2}\nabla \times \mathbf{v}$ – локальная скорость элемента жидкости. Уравнения записаны в сопутсвующей системе отсчета, вращающейся с угловой скоростью ω по отношению к лабораторной системе отсчета. Также стоит заметить, что мы ограничимся малыми угловыми скоростями для того чтобы центробежные силы порядка $O(\omega^2)$ были пренебрежимо малыми.

Подставляя одно уравнение в другое получим

$$\sqrt{G}\dot{\mathbf{x}} = \hat{\mathbf{p}} + 2\omega |\mathbf{p}| (\hat{\mathbf{p}} \cdot \boldsymbol{\Omega}_{\mathbf{p}})$$
(62)

где для детерминанта матрицы 6х6 с коэффициентами уравнений движения примем обозначение $G = (1+2|\mathbf{p}|\omega\cdot\mathbf{\Omega}_{\mathbf{p}})^2$

Плотность тока фотонов теперь, при помощи функции распределения лево- или право- поляризованных фотонов в фазовом пространстве, запишется следующим образом:

$$\mathbf{j} = \int \frac{\mathbf{d}^3 \mathbf{p}}{(2\pi)^3} \sqrt{\mathbf{G}} \dot{\mathbf{x}} \mathbf{n}_{\mathbf{p}}$$
(63)

Из второго члена в уравнении (62) можем выписать вклад в фотонный ток, пропорциональный завихренности:

$$\mathbf{j}_{\mathbf{CVE}} = 2\omega \int \frac{\mathbf{d}^3 \mathbf{p}}{(2\pi)^3} |\mathbf{p}| (\mathbf{\hat{p}} \cdot \mathbf{\Omega}_{\mathbf{p}})$$
(64)

В состоянии термального равновесия функция распредления n_p принимает форму распределения Бозе-Эйнштейна – функции температуры и хим. потенциала:

$$n_p = \frac{1}{\exp\frac{1}{T}(\epsilon_p - \mu) - 1}$$
(65)

Подставляя это в выражение для тока получим:

$$j_{CVE}^{\pm} = \pm \frac{1}{\pi^2} F(2, -\beta\mu) T^2 \omega$$
 (66)

Здесь $F(2, -\beta\mu)$ есть интергал Бозе-Эйнштейна, который в случае нулевого химического потенциала примет известное табличное значение:

$$F(2,0) = \frac{\pi^2}{6} \tag{67}$$

А значит, выражение фотонного Кирального Вихревого Эффекта примет вид:

$$j_{CVE}^{A} = j_{CVE}^{+} - j_{CVE}^{-} = \frac{2}{\pi^2} F(2, -\beta\mu) T^2 \omega = \frac{T^2}{3} \omega$$
(68)

3.4 Результат для гравитационной аномалии. Зависимость от спина.

Перейдем теперь непосредственно к оценке Кирального Вихревого Эффекта для фотонов. Сначала проведем рассуждения, следуя логике [4].

Сразу же стоит заметить, что чтобы корректно применять механизм, изложенный в [4], нужно работать с системами с одинаковым количеством степеней свободы. А значит, необходимо в этом смысле отнормировать случай с фотонами к Вейлевскому спинору. Ведь нас интересует зависимость КВЭ от только от значения спина рассматриваемых частиц. Для этого взглянем на уравнения (19) и (41).

Проведя те же вычисления, но уже для тока K^{μ} для фотонов и также использовав "трюк"с подменой источника тепла на Хокинговское излучение получим, что:

$$\frac{(CVE)_{photon}}{(CVE)_{fermion}} = 4 \tag{69}$$

то есть значение для КВЭ для системы с фотонами в 4 раза больше, нежели чем для систем с фермионами.

С этим результатом связана важная проблема. Выражение для Кирального Вихревого Эффекта для фотонов, полученное иными способами, не затрагивающие кривые пространства и киральную гравитационную аномалию, а напротив, исходящие из соображений на фоне плоского пространства-времени, дают результат

$$\frac{(CVE)_{photon}}{(CVE)_{fermion}}\Big|_{flat \ space} = 2 \tag{70}$$

3.5 Отношение киральных вихревых эффектов для спинов S = 1/2, S = 1

Критичным является отношение термальных вихревых эффектов для спинов 1/2 и 1. Для спина 1/2 многими авторами получено:

$$\vec{J}_{CVE}^{Weyl} = \frac{T^2}{12} \vec{\Omega}, \tag{71}$$

где \vec{J}_{CVE}^{Weyl} –ток вихревого эффекта в теории с одним правым Вейлевским спинором, $\vec{\Omega}$ -вектор угловой скорости. Можно считать, что соотношение (71) не подлежит сомнению.

Из выражения для гравитационной аномалии, непосредственно следует предсказание для вихревого эффекта в теории с фотонами:

$$\vec{J}_{CVE}^{photon} = 4 \cdot \frac{T^2}{12} \vec{\Omega} \quad (anomaly).$$
(72)

Отметим, что в этом разделе мы не следим за знаками эффекта, отчасти потому, что в разных работах порой подразумеваются разные определения $\vec{\Omega}$.

В то же время результат общепринятых расчетов [13, 14] имеет вид:

$$\vec{J}_{CVE}^{photon} = 2 \cdot \frac{T^2}{12} \vec{\Omega} \qquad (Kubo \ relation) \tag{73}$$

Это соотношение получено путем использования соотношения Кубо для вихревого эффекта. Расхождение в 2 раза между соотношениями (72) и (73) является предметом нашего рассмотрения.

В работе Ямамото [33] киральный вихревой эффект выводился с испольованием кинетической теории для киральных частиц. Основы этого метода см. в работе Стефанова и Йина [34]. Ответ совпадает с (72) и противоречит не только соотношению (73) но и результатам работ [16,18], где используется техника сходная с работой Ямамото.

То обстоятельство, что результат работы Ямамото совпадает с пред-

сказаниями, основанными на гравитационной аномалии замечено впервые Г.Ю. Прохоровым (частное сообщение).

В работе М. Н. Чернодуба с соавторами [35] также вычисляется вихревой эффект для фотонов. Используется оригинальная методика, основанная на рассмотрении так называемых "зилчей"(Zilch), или токов иной размерности, чем каноническая (d=3), и ответ для стандартного вихревого эффекта возникает только в результате некоторого предельного перехода по размерности тока. Результат расчета можно представить как:

$$\vec{J}_{CVE}^{photon} = (8/3) \cdot \frac{T^2}{12} \vec{\Omega} \qquad (Ziches)$$
(74)

Ответ (74) был подтвержден совсем недавно в работе [23].

Это расхождение между результатами различных работ, насколько нам известно, не обсуждалось в литературе сколько-нибудь систематически. Мы приводим ниже оригинальный вывод вихревого эффекта для фотонов. В отличие от всех остальных подходов, наш подход использует только статистическую физику (и относится к равновесию, или частицам на массовой поверхности). Рассмотрение элементарно, и результат совпадает с результатом Ямамото.

Оговоримся сразу, что мы не нашли каких-либо ошибок ни в одной их процитированных выше работ. Поэтому речь может идти только об анализе справедливости тех иных предположений, заложенных в различные методики расчетов.

3.6 Статистический подход: физика равновесия

Выпишем распеределение Бозе для нейтральной безмассовой скалярной частицы в трех измерениях:

$$n_B = \frac{1}{8\pi^3} \int_0^\infty 4\pi \epsilon^2 d\epsilon \frac{1}{e^{\beta\epsilon} - 1} \tag{75}$$

где для безмассовой частицы $\epsilon = |\vec{p}|, 4\pi\epsilon^2$ - поверхность сферы радиуса ϵ , $\beta = \frac{1}{T}$, а фактор перед знаком интеграла происходит от $d^3p/(2\pi)^3$.

Та же фунцкия для фотона будет выглядеть следующим образом:

$$n_B^{photon} = 2\frac{1}{8\pi^3} \int_0^\infty 4\pi\epsilon^2 d\epsilon \frac{1}{e^{\beta\epsilon} - 1}$$
(76)

то есть, будет отличаться лишь фактором 2.

Теперь запишем распределение Ферми для Вейлевского спинора:

$$n_F^{Weyl} = \frac{1}{8\pi^3} \int_{-\infty}^{\infty} 4\pi \epsilon^2 d\epsilon \frac{1}{e^{\beta\epsilon} + 1}$$
(77)

Интегрирование проводится не от 0 до ∞ , а по всей числовой прямой. Состояния с положительной энергией отвечают одной степени свободы, для определенности договоримся, что состояниям, поляризованным по импульсу. Появляются состояния с отрицательными энергиями, отвечающие античастицам. Для учета таких состояний необходимо вычитание моря Дирака при нулевой температуре. Другими словами, задача перестает быть одночастичной.

С точки зрения количества степеней свободы Вейлевский спинор подходит нам для сравнения, так как, как и у фотона, у него их две. Перейдем от состояний с отрицательной энергией – дырок к античастицам – состоянием с положительной энергией но поляризацией, направленной против импульса, получим:

$$n_F^{Weyl} = 2\frac{1}{8\pi^3} \int_0^\infty 4\pi\epsilon^2 d\epsilon \frac{1}{e^{\beta\epsilon} + 1}$$
(78)

Теперь включим вращение. Сначала рассмотрим случай фермионов. Для того, чтобы это сделать необходимо "расщепить"два вырожденных уровня на величину Ω, вывод связан с разложением по разным наборам собсвтенных функций и впервые для безмассовых частиц со спином 1/2 предложен А. Виленкиным. В итоге распределение примет вид:

$$n_F^{Weyl} = \frac{1}{8\pi^3} \int_0^\infty 4\pi \epsilon^2 d\epsilon \left(\frac{1}{e^{\beta(\epsilon - \Omega/2)} + 1} + \frac{1}{e^{\beta(\epsilon + \Omega/2)} + 1}\right)$$
(79)

Теперь перейдем к бозонам. В этом случае расщепить вырожденные уровни придется уже на величину 2Ω. Соответсвующая формула для частиц со спином 1 примет вид:

$$n_B^{photon} = \frac{1}{8\pi^3} \int_0^\infty 4\pi \epsilon^2 d\epsilon \left(\frac{1}{e^{\beta(\epsilon-\Omega)} - 1} + \frac{1}{e^{\beta(\epsilon+\Omega)} - 1}\right) \tag{80}$$

Получается, что разница между двумя выражениями состоит в замене $\frac{\Omega}{2}$ на Ω , а распределения Ферми на распределение Бозе. Результат, похожий на (80) можно найти, например в [19].

Полученный ответ лишь кажется простым. Попробуем качественно обосновать полученные выкладки. Сделать это можно следующим образом:

Во-первых заметим, что фазовый объем записан как в случае сферической симметрии в пространстве импульсов. Спин же при этом очевидно направлен вдоль вектора $\vec{\Omega}$. А значит, имеет смысл думать о квантовании в цилиндрических координатах.

Чтобы проиллюстрировать это, попробуем начать со случая скалярной частицы и будем квантовать в цилиндричесих координатах. Очевидно при этом, что плотность состояний свободной частицы, если количество состояний, где набирается интеграл достаточно большое, не зависит от того, в каких координатах мы квантуем: декартовых, сферических или цилиндрических. Добавив в рассмотрение спин (1/2 или 1), начиная с цилиндрических координат и уже потом перейдя к декартовым для описания орбитального движения мы не поменяем зависимость от спина.

Получается, спин "висит"как в цилиндрических координатах, а зна-

чит имеет место факторизация спиновой зависимости. Отсюда и простота ответа.

Перейдем непосредственно к ответу для Кирального Вихревого Эффекта. Для того, чтобы его получить, достаточно в уравнениях (79) (80) заменить на обратный знак в скобках:

$$J_{CVE}^{Weyl} = \frac{1}{8\pi^3} \int_0^\infty 4\pi \epsilon^2 d\epsilon \left(\frac{1}{e^{\beta(\epsilon - \Omega/2)} + 1} - \frac{1}{e^{\beta(\epsilon + \Omega/2)} + 1}\right)$$
(81)

для спина 1/2, и соответственно:

$$J_{CVE}^{photon} = \frac{1}{8\pi^3} \int_0^\infty 4\pi \epsilon^2 d\epsilon \left(\frac{1}{e^{\beta(\epsilon-\Omega)} - 1} - \frac{1}{e^{\beta(\epsilon+\Omega)} - 1}\right)$$
(82)

После чего, получим ответы:

$$\vec{J}_{CVE}^{Weyl} = \frac{1}{12} T^2 \vec{\Omega} \tag{83}$$

для фермионов (что, стоит заметить, полностью совпадает с известными результатами). И, соответственно:

$$\vec{J}_{CVE}^{photon} = \frac{1}{3}T^2\vec{\Omega} \tag{84}$$

для фотонов.

Что, стоит заметить, совпадает с ответом Ямамото для спина 1 [33].

3.7 Еще о сравнениях с другими подходами

Выше упоминалась работа М. Чернодуба с соавторами [35]. Результат для Кирального Вихревого эффекта фотонов в ней:

$$\vec{J}_{CVE}^{photon} = (8/3) \cdot \frac{T^2}{12} \vec{\Omega} \qquad (Ziches)$$
(85)

Этот результат отличается от полученного нами (и, например, Ямамото) в 2/3 раза. Авторами объясняется такое отличие: они выбрали изначально для описания КВЭ фундаментальный ток, отличающийся от K^{μ} . Выбор тока K^{μ} согласно их описанию не подходит, ввиду несохранения, ведь, как мы помним:

$$\partial_{\mu}K^{\mu} = -\frac{1}{2}F^{\mu\nu}\tilde{F}_{\mu\nu} \tag{86}$$

Обратим, однако, внимание на статистический вывод. По построению в нем рассматриваются частицы на массовой поверхности, а как раз на массовой поверхности ток K^{μ} сохраняется:

$$(F^{\mu\nu}\tilde{F}_{\mu\nu})_{plane\ wave} \sim (\vec{E}\cdot\vec{H})_{plane\ wave} = 0$$
(87)

Для фотонов этот закон сохранения означает, что лево- и право- поляризованный свет распространяется независимо. Этот принцип остается верным и после включения внешнего нравитационного поля.

Более того, на массовой поверхности заряд

$$Q = \int d^3 x K^0 \tag{88}$$

есть калибровочно инвариантная величина. Тем самым, на наш взгляд, отпадает необходимость в иных определениях фундаментального тока для вычисления Кирального Вихревого Эффекта фотонов. А рассмотрение в терминах "зилчей" выходит за рамки данной работы. Далее, полученное нами выражение для КВЭ фотонов, как уже упомниальнось, отличается вдвое от результата, полученного в работе Сона и Голькара [13], где прменяется вычисление двухточечного кореллятора в однопетлевом приближении. Согласно этим вычислениям авторы получают проводимость:

$$\sigma_{CVE}^{\gamma} = \frac{T^2}{6} \tag{89}$$

На данный момент не совсем понятна причина отличия результата, полученного авторами в этой работе и выражением, полученным при помощи статистического метода. На этот счет есть нескольно соображений:

Во-первых можно возразить, что ответ в работе Сона и Голькара [13] содержит расходящиеся в ультрафиолете выражения, а результат возникает как сумма расходящихся выражений $\sum_{n=1}^{\infty} = -1/12$. Хоть и нельзя исключить возможность некорректности применения такой процедуры в конкретном случае, подобное суммирование часто применяется при расчете петлевых графиков и приводит к известным ответам "из учебников".

Во-вторых, в этой работе ток K^{μ} используется при работе с виртуальными фотонами и вообще говоря, ответ, в отличие от случая сиситемы с фермионами, может зависеть от калибровки. При этом сразу приведем и контр-аргумент, ведь по крайней мере на одном классе калибровок проверена калибровочная инвариантность этого ответа.

3.8 Случай больших значений спина

В работе М. Даффа [11] была получена формула для гравитационной аномалии, ассоциированной с безмассовыми фермионами спина S:

$$\partial_{\mu}K^{\mu}_{S} = (const)(2S^{3} - S)R\tilde{R}$$
⁽⁹⁰⁾

где (const) – константа не зависящая от спина частиц S, а K_S^{μ} (который может быть построен в терминах псевдовектора Паули-Любанского) есть обобщение тока K^{μ} на случай спина S.

В работе А. Д. Долгова и др. было показано, что при условии вариации знака в зависимости от того, с каким вкладом: фермионов или бозонов, мы имеем дело, формула (90) описывает результат для фотонного тока. В итоге имеем выражении для аномалии, работающую как в случае целых, так и в случае полуцелых спинов.

$$\partial_{\mu}K_{S}^{\mu} = (-1)^{2S+1}(2S^{3} - S)(const)R\tilde{R}$$
(91)

Согласование выражения (91) с расчетами в рамках температурной теории поля носит очень нетривиальный характер. С деталями можно ознакомиться по работам [30], [31]. Здесь же мы приведем краткий обзор ситуации.

При рассмотрении равновесия в рамках статистической физики добавляют эффективное взаимодейстивие:

$$\delta H \sim \hat{M} \cdot \vec{\Omega} \sim \Omega \cdot S \tag{92}$$

здесь \vec{M} это генератор вращений.

Действительно, раз речь идет о членах, линейных по Ω то и возникает наивная оценка линейной зависимости от спина. Киральный Вихревой Эффект отностися именно к этой категории, поэтому в рамках температурной физики ожидается линейная зависимость от Ω · S. И правда, раз температура выявляет число степеней свободы частицы, а число степеней свободы, которое и определяет температурные эффекты для безмассовых частиц неизменно и равно двум.

Однако, если мы будем рассматривать теорию поля во внешнем гравитационном поле, то нас скорее будет интересовать как ускорение взаимодействует с вращением. Когда речь заходит о гравитационной аномалии, мы обсуждаем члены порядка $R\tilde{R}$ или же $a^2\Omega$. В эффективном взаимодействии ускорение входит во вклад:

$$\delta H \sim ia \cdot S \tag{93}$$

и зависимость от третьей степени спина таким образом может найти объяснение.

В итоге можем заключить, что дуальность между ускорением и температурой может нарушаться во взаимодействии частиц высших спинов. Однако, подчернем, что окончательно и строго об этом можно судить только в рамках конкретных теорий с конкретными спинами.

3.9 О дуальности подходов

В вышеописанных работах и вообще этом дипломе устанавливается некая дуальность подходов к вычислению Кирального Вихревого Эффекта в терминах температурной теории поля и физики черных дыр. В выводах из плоского пространства вводится температура и оценивается двухточечный кореллятор (как в секции вывода с использованием формул Кубо). В случае физики черных дыр же, применяется наоборот теория поля при нулевой температуре во внешних гравитационном и электромагнитном полях, аномальные члены появляются как в дивергенции четырехмерных акстиальных токах, так и в ковариантной производной тензора энергии импульса. Установка знака "равно"между ускорением на горизонте и температурой делает результаты неотличимыми. Конечно, последний аргумент предыдущей секции на первый взгляд нарушает этот принцип, ведь результаты все-таки разнятся.

4 Заключение

В заключение к данной дипломной работе кратко опишем ее суть. Был описан Киральный Вихревой Эффект для систем как с фермионами (спин 1/2) на основе некторого объема актуальной литературы, так и для систем с фотонами (спин 1), с основной фокусировкой, конечно же, на случае фотонов. Описана практически "с нуля"бозонная киральная аномалия и киральная гравитационная аномалия, а также выводы Квирального Вихревого Эффекта для тока фотонов. Конкретнее:

- Вывод фотонного КВЭ с использованием формул Кубо (согласно работам [13-15])
- Вывод из соображений физической кинетики (как в работе [33])
- Статистический вывод из свойств Бозе- и Ферми- распределений
- И вывод, основанный на работе Стоуна [4] о подходе смешанной киральнойгравитационной аномалии, но применимо теперь к фотонам.

Стоит подчеркнуть, что в статистическом выводе (квантовая механика конечно остается) мы избегаем применения кинетического подхода и рассматриваем частицы на массовой поверхности, что упрощает критический анализ сделанных предположений, ведь при сходе с массовой поверхности (в теоретико-полевом подходе) могут возникать проблемы с калибровочной инвариантностью.

Было показано разнообразие подходов, выводов и результатов (в том числе и оргинальные соображения) и приведены аргументы, объясняющие сходства и различия результатов, насколько это было возможно (в самой литературе много разнящихся результатов). Уделено также внимание крайне занимательному соображению о триаде теорий во внешнем гравитационном поле, рассмотрения ускоренного движения в плоском пространстве и температурной теории поля в плоском пространстве. Описаны механизмы перехода теорий друг в друга. Как упоминалось выше, по нашему мнению, наиболее убедительными, с теоретической точки зрения, являются выводы в рамках статистического подхода, или физики равновесия. Однако, есть два вывода, которые приводят к несовпадающим результатам. Во-первых подробные выкладки (в подходе с использованием "зилчей") опубликованы в работе М.Н. Чернодуба с соавторами и, во-вторых, элементарный вывод, основанный на аналогии со спином 1/2, представлен выше. Несовпадение результатов требует дальнейших усилий по поиску интерпретации.

Список литературы

- Kharzeev D., Landsteiner K., Schmitt A., Yee H.-Y, Strongly Interacting Matter in Magnetic Fields // Lect. Notes Phys. 2013 V. 873 P. 1-624
- [2] D. T. Son and P. Surowka, "Hydrodynamics with Triangle Anomalies" Phys. Rev. Lett. 103 (2009) 191601, arXiv:0906.5044 [hep-th].
- [3] A. Vilenkin, "Quantum Field Theory At Finite Temperature In A Rotating System" Phys. Rev. D21 (1980) 2260.
- [4] M. Stone and J. Kim, "Mixed Anomalies: Chiral Vortical Effect and the Sommerfeld Expansion", Phys. Rev. D98 (2018) 025012, arXiv:1804.08668 [cond-mat.mes-hall].
- [5] Prokhorov G., Teryaev O. V. Anomalous current from the covariant Wigner function// Phys. Rev. 2018 V. D97 P. 076013-076019, arXiv:1707.02491 [hep-th].
- [6] Becattini F. Thermodynamic equilibrium with acceleration and the Unruh effect // Phys. Rev. (2018) V. D97 P. 085013-08519 arXiv:1712.08031 [gr-qc]
- [7] Zubarev D. N., Prozorkevich A. V., Smolyanskii S. A., Derivation of nonlinear generalized equations of quantum relativistic hydrodynamics //Theoret. and Math. Phys, 1979 V. 40 P. 821-831.
- [8] Prokhorov G., Teryaev O., Zakharov V.I. Axial current in rotating and accelerating medium// Phys. Rev. 2018 V. D98 P. 071901 arXiv:1805.12029 [hep-th].
- [9] Prokhorov G., Teryaev O., Zakharov, V.I. "Unruh effect universality: emergent conical geometry from density operator", JHEP 2003 (2020) 137, arXiv:1911.04545 [hep-th].

- [10] "Gravitational Anomalies", Alvarez-Gaume L., Witten E., Nucl. Phys. B234 (1984) 269.
- [11] M. J. Duff, Supergravity 81, Proc. of 1st School on Supergravity, Ed. by S. Ferrara and J. G. Taylor, Cambridge Univ. Press, 1982 [see: Introduction to Supergravity, Moscow, Mir, 1985 (in Russian) 1.
- [12] A.I. Vainshtein, A.D. Dolgov, V. I. Zakharov, and I.B. Khriplovich, "Chiral Photon Current And Its Anomaly In A Gravitational Field", Sov. Phys. JETP 67 (1988) 1326, Zh. Eksp. Teor. Fiz. 94 (1988) 54-64.
- S. Golkar and D. T. Son, "(Non)-renormalization of the chiral vortical effect coefficient" JHEP 1502 (2015) 169, arXiv:1207.5806 [hep-th].
- [14] De-Fu Hou, Hui Liu, and Hai-cang Ren, "A Possible Higher Order Correction to the Vortical Conductivity in a Gauge Field Plasma" Phys. Rev. D86 (2012) 121703, arXiv:1210.0969 [hep-th].
- [15] I. Agullo, A. del Rio, and J. Navarro-Salas, "Electromagnetic duality anomaly in curved spacetimes", Phys. Rev. Lett. 118 (2017), 111301, arXiv:1607.08879 [gr-qc].
- [16] A. Avkhadiev and A. V. Sadofyev, "Chiral Vortical Effect for Bosons", Phys. Rev. D96 (2017) 045015 arXiv:1702.07340 [hep-th].
- [17] A.V. Sadofyev, V.I. Shevchenko, and V.I. Zakharov, "Notes on chiral hydrodynamics within effective theory approach", Phys. Rev. D83 (2011) 105025, arXiv:1012.1958 [hepth].
- [18] "Chiral Vortical Effect For An Arbitrary Spin Xu-Guang Huang and A. V. Sadofyev, JHEP 1903 (2019) 08, e-Print: arXiv:1805.08779 [hep-th].
- [19] M.N. Chernodub, A. Cortijo, and K. Landsteiner, "Zilch vortical effect", Phys. Rev. D98 (2018) 065016, arXiv:1807.10705 [hep-th].
- [20] H. B. Nielsen and M. Ninomiya, "Adler-bell-jackiw Anomaly And Weyl Fermions In Crystal", Phys. Lett. 130B (1983) 389.
- [21] Dolgov A.D., Zakharov V.I., "On conservation of the axial current in massless electrodynamics", Nuclear Physics B, 15 (1971) 525-540.
- [22] "Theory of Thermal Transport Coefficients" J. M. Luttinger Phys. Rev. 135, A1505
- [23] Zilch Vortical Effect, Berry Phase, and Kinetic Theory Xu-Guang Huang, Pavel Mitkin, Andrey V. Sadofyev, Enrico Speranza e-Print: 2006.03591 [hep-th]

- [24] K. Landsteiner, Eu. Megias, and F. Pena-Benitez, "Gravitational Anomaly and Transport", Phys. Rev. Lett. 107 (2011) 021601, arXiv:1103.5006 [hep-ph].
- [25] K. Landsteiner, E. Megias, and F. Pena-Benitez, "Anomalies and Transport Coefficients: The Chiral Gravito-Magnetic Effect", arXiv:1110.3615 [hep-ph].
- [26] A. Avdoshkin, V.P. Kirilin, A.V. Sadofyev, and V.I. Zakharov, Phys. Lett. B 755 1 (2016), 1402.3587.
- [27] S. P. Robinson and F. Wilczek, "Relationship between Hawking Radiation and Gravitational Anomalies", Phys. Rev. Lett. 95 (2005) 011303;
 S. Iso, H. Umetsu, and F. Wilczek, "Hawking Radiation from Charged Black Holes via Gauge and Gravitational Anomalies", Phys. Rev. Lett. 96, 151302 (2006);
 S. Iso, H. Umetsu, and F. Wilczek, Anomalies, Hawking Radiations and Regularity in Rotating Black Holes", Phys. Rev. D74, 044017 (2006).
- [28] "Parity Nonconservation and Rotating Black Holes A. Vilenkin, Phys.Rev.Lett. 41 (1978) 1575-1577.
 "Parity Violating Currents in Thermal Radiation A. Vilenkin, Phys.Lett. 80B (1978) 150-152.
- [29] A. Blommaert, Th. G. Mertens, H. Verschelde, and V. I. Zakharov, "Edge State Quantization: Vector Fields in Rindler", JHEP 1808 (2018) 196, arXiv:1801.09910 [hepth].
- [30] G.Prokhorov, O.Teryaev, and V.Zakharov, "On axial current in rotating and accelerating medium", Phys.Rev.D 98 (2018) 7, 071901arXiv:1805.12029 [hep-th].
- [31] Chiral effects in external gravitational field P.G. Mitkin, G. Prokhorov, O.V. Teryaev, V.I. Zakharov Nucl.Part.Phys.Proc. 300-302 (2018) 203-209.
- [32] A.D. Dolgov, I.B. Khriplovich, A.I. Vainshtein, and V. I. Zakharov, "Photonic Chiral Current and Its Anomaly in a Gravitational Field", Nucl. Phys. B315 (1989) 138.
- [33] Photonic chiral vortical effect, N. Yamamoto, Phys.Rev.D 96 (2017) 5, 051902, 1702.08886 [hep-th]
- [34] "Chiral Kinetic Theory"M.A. Stephanov and Y. Yin, Phys.Rev.Lett. 109 (2012) 1620016 arXiv:1207.0747 [hep-th].
- [35] "Zilch vortical effect M.N. Chernodub, A. Cortijo, K. Landsteiner, Phys.Rev.D 98 (2018)
 6, 065016 807.10705 [hep-th]

[36] CVE for photons: black-hole vs. flat-space derivation, G.Yu. Prokhorov, O.V. Teryaev, V.I. Zakharov e-Print: 2003.11119 [hep-th]