
Ministry of Education of the Russian Federation

Federal State Autonomous Educational Institution of Higher Education
“Moscow Institute of Physics and Technology (National Research University)”

Phystech-School of Physics and Research named after Landau (LPI)

Department of Theoretical Astrophysics and Quantum Field Theory

Pentagon identity solution in algebra Uq(slN)

Final qualifying work
(Master’s thesis)

Educational standard: 03.04.01 Applied mathematics and physics

Work done by
M02-921b student Alekseev Victor Aleksandrovich

Supervisor:
PhD, Senior Researcher Sleptsov Alexey Vasilevich

Moscow, 2021





Abstract

The connection between Uq(slN ) 6-j symbols and orthogonal polynomials is established. We demonstrate that
the pentagon identity alone implies that multiplicity-free 6-j symbols satisfy three-term recurrence relation and
orthogonality, making them orthogonal polynomials of several variables, associated with Young diagrams. The
coefficients in the recurrence relation are primitive 6-j symbols.

We examine in more detail the case of orthogonal polynomials of one variable, especially when two represen-
tations are symmetric and one is conjugate to symmetric. The coefficients can be calculated explicitly via Racah
back-coupling relation alone. The 6-j symbol is identified with q-Racah polynomial, that is, a terminating q-
hypergeometric series 4Φ3. It includes as a special case the expression conjectured previously for two symmetric
and two conjugate to symmetric representations [1]. Thus, the algebraic expression for the considered class of
6-j symbols is obtained from the general setting with the only knowledge about the pentagon identity and the
Racah back-coupling rule.
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1 Introduction

The representation theory is widely used to study symmetries and classify them with analytical methods. The
symmetry groups arise in a lot of areas of classical and quantum physics. The questions about representations
structure can be roughly divided into two parts. The first one is the representation theory of one separate
irreducible representation. The second one is the theory of products of representations. This separation is very
evident in the Hopf algebras, where inside the representation the structure is given by the algebra multipli-
cation rules, whereas the coalgebra comultiplication governs the connection between the products of different
representations. The study of the latter one is known as Racah-Wigner algebra [2].

For quantum algebras there are several important concepts that are central in the description of representa-
tion products. The first one is R-matrix and the second one is 3-j symbol (coupling coefficient, Clebsch-Gordan
coefficient) and the third one is 6-j symbol (recoupling coefficient). The 3-j symbol is probably the most cele-
brated object among these three for physics. It allows to describe of the decomposition of the product of two
representations into the third one. However, it acts non-trivially in the representation space and thus depends on
the basis choice. The next two objects acts on each irreducible representation as a constant, so they are invariant
objects of the representation tensor product. R-matrix has a meaning of representations permutation and acts
non-trivially in quantum algebra with q 6= 1. The 6-j symbol arises as the associator in the representations
product.

There is a closed expression for R-matrix [3], but 3-j symbols and 6-j symbols are lacking of such description.
Only for the simplest case of quantum Lie algebra Uq(sl2) there is an expression for both of them [4]. There is
an algorithm how to calculate them by the definition, but it soon becomes a cumbersome task. Although they
can be obtained explicitly, we are interested in the analytical closed expression for a general Uq(slN ) symbol.

For the 6-j symbols beyond Uq(sl2) only a few series are known. Firstly, there is an expression for 6-j symbol
with three symmetric representations [5]. Secondly, there are expressions for Racah matrices that have only
symmetric or conjugate to symmetric representations [1, 6]. Also there is an formula for one symmetric and one
antisymmetric representations. All of them are conjectural in a sense that they are not proven, but checked to
be true for all known cases.

This paper provides a new framework that can be used to obtain 6-j symbols analytically. It consider 6-j
symbols as abstract functions that satisfy several identities. Namely, 6-j symbols satisfy pentagon identity,
Yang-Baxter equation, orthogonality and possess tetrahedral symmetries [7]. The central idea of this paper is
that this information is enough to uniquely determine the value of 6-j symbols. It turns out that these properties
can be translated into the language of orthogonal polynomials. All orthogonal polynomials possess a three-term
recurrence relation. The pentagon identity implies the three-term recurrence relation on certain Uq(slN ) 6-j
symbols. This recurrence can be solved explicitly, which provide an algebraic expression for 6-j symbols fully
determined by its properties.

For instance, Uq(sl2) 6-j symbols are known to be a properly normalized q-Racah polynomial. The orthogo-
nality of such polynomial coincides with 6-j symbol orthogonality. A similar method was used in the work [2] to
derive arbitrary Uq(su2) 6-j symbol. For Uq(slN ) the situation becomes much more complex, as the pentagon
equation interlaces different representations in a far more unpredictable way than for Uq(sl2). However, we have
discovered a way how to transform the pentagon identity in Uq(slN ) into a three-term recurrence relation on 6-j
symbols.

We need to mention that pentagon itself does not provide us with a concrete expression for 6-j symbols.
The three-term recurrence relation coefficients are written purely in primitive 6-j symbols, that is, 6-j symbols
containing a fundamental representation in arguments at least once. Such symbols itselves are hard to obtain
in general. We used Racah back-coupling rule to determine their values for a less general setting deduce the
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polynomial expression for 6-j symbols with two symmetric representations and one conjugate to symmetric.

The paper is organized as follows.
In Section 1 we introduce the notion of Uq(slN ) representations, their tensor products. On the space of

representation tensor product we define 3-j symbols, 6-j symbols and R-matrices. We emphasize our attention
to R-matrix and 6-j symbol properties. Then we recall the notion of basic hypergeometric series, specifically 4Φ3

and the facts from the theory of orthogonal polynomials. Then we review the interplay between 6-j symbols and
orthogonal polynomials. Lastly, we state two main results of our paper: the deduction of three-term recurrence
relation for a wide class of multiplicity-free 6-j symbols and the derivation of the closed expression for 6-j symbols
of types I+ and II+.

In Section 2 we prove that for the general multiplicity-free 6-j symbol, that is, with two symmetric rep-
resentations, it is possible to construct a three-term recurrence relation which corresponds to a multivariable
orthogonal polynomial. We consider the polynomial of one variable as a basic example of this statement and
write down it in detail. Corresponding 6-j symbols have one rectangular representation and two representations
either symmetric, or antisymmetric, or conjugate to symmetric. In this section we only use pentagon identity
and basic fusion rules of Uq(slN ). The resulting three-term relation is written in terms of primitive 6-j symbols.
The existence of such relation implies that considered 6-j symbols are orthogonal polynomials, which can be
easily obtained recursively.

In Section 3 we apply this method for 6-j symbols of types I+ and II+. In this case we are able to explicitly
calculate all arising coefficients, using the results from Appendix A, where we solved Racah back-coupling rule
for two-dimensional case. After some simplifications we write both types of 6-j symbols as a q-Racah polynomial.
This polynomial has an explicit form in terms of terminating q-hypergeometric series 4Φ3. Thus, we obtain an
expression for 6-j symbols from the pentagon identity and Racah back-coupling rule.

In Appendix A we solve the back-coupling rule with respect to 6-j symbols, using the spectral decomposition
of R-matrices. This result has already been known for some time in papers on knot polynomials [8]. However,
we include it in our work, because it is essential in the derivation. This expression allow to evaluate any Racah
matrix of dimension 2, which we use extensively in the main part of the paper. We also add the criteria for the
solution uniqueness and prove that at least for the considered in this work primitive 6-j symbols the expression
is unique.

1.1 Tensor products of representations in Uq(slN)

Irreducible repesentations of algebra Uq(slN ). We will consider Uq(slN ) algebra with finite-dimensional
representations of the highest weight for the rest of the paper. More precisely, we only use the notion of Young
diagrams and fusion rules for them [9].

Irreducible representation Rµ of Uq(slN ) is determined by its highest weight. All of them can be described
by the ordered set of non-increasing non-negative integers µ1 ≥ µ2 ≥ · · · ≥ µN , it is called a Young diagram. We
denote it as µ = Jµ1, . . . , µN K. For Uq(slN ) irreducible representations µ and µ′ = Jµ1 + a, µ2 + a, . . . , µN + aK
are equivalent, thus, we can without loss of generality set µN = 0. The order of Young diagram |µ| is just the
number of elements in the partition: |µ| =

∑
i µi.

If for k < N the diagram has µk+1 = 0 we write it just as Jµ1, . . . µkK, in particular, symmetric representations
are denoted as Jµ1K. A representation Rν = Rµ is conjugate to Rµ, it has Young diagram ν = Jµ1 − µN , µ1 −
µN−1, . . . , µ1 − µ2, 0K. For the diagram with n equal rows we write µni instead of µi, µi, . . . , µi, thus, conjugate
to symmetric representation has diagram Jµ1K = JµN−11 K.

There is a natural q-analogue for trace and dimension [10, 5] in the finite-dimensional quantum algebras

4



defined in terms of Cartan subalgebra H and weights αi, 1 ≤ i ≤ N − 1:

Trq(z) := Tr (K2ρz) , K2ρ = q(
∑
i αi,H),

dimq V := Trq(idV )
(1)

The quantum dimension of an irreducible Uq(slN ) representation can be written explicitly [5]:

dimq Vµ ≡ Dµ =
∏

(i,j)∈λ

[N + i− j]
[µi − i+ µTj − j + 1]

, [x] :=
qx/2 − q−x/2

q1/2 − q−1/2 (2)

where µT is a transposed Young diagram and [x] is a quantum number. The two types of brackets are introduced
to avoid confusion. Quantum dimension and trace becomes the ordinary dimension and trace when q → 1.

Tensor product of irreducible representations. Let us consider the tensor product of two irreducible
representations Rµ ⊗ Rν acting in the space Vµ ⊗ Vν in a obvious way. This product is itself a representation,
but in general reducible, hence it can be decomposed into irreducible ones by Littlewood-Richardson rules [9].
On the level of vector spaces the decomposition is

Vµ ⊗ Vν =
⊕
ρ

Mρ
µν ⊗ Vρ (3)

Here Mρ
µν is the multiplicity space, i.e. the vector space of highest weight ρ in the product. The dimension

m = dim(Mρ
µν) is equal to the number of Vρ in the decomposition. IfMρ

µν is one-dimensional, the representation
is called multiplicity-free and Mρ

µν ⊗ Vρ is canonically identified with Vρ. In general m 6= 1 and it is called the
multiplicity of the product. The basis in Mρ

µν can not be fixed by means of representation theory and should be
chosen by other methods.

In each space Vµ there is an eigenbasis given by the highest weight vector and its descendants. With this
basis in each irreducible representation and multiplicity space basis specification, one may find an invertible
map corresponding to decomposition (3). If we additionally introduce a norm on the space it can be chosen to
be unitary. This map as a finite-dimensional matrix acts non-trivially in both representation and multiplicity
indices. The components of such matrix are known as Clebsch-Gordan coefficients.

6j-symbols. The tensor product of three representations has the structure of highest weights and it depends
on the product order, i.e. it is non-associative. The vector spaces tensor product (V1⊗V2)⊗V3 and V1⊗(V2⊗V3)

are canonically isomorphic. This isomorphism can be lifted to the representations, so we have

(R1 ⊗R2)⊗R3
∼= R1 ⊗ (R2 ⊗R3) (4)

This isomorphism is carried out by invertible transformation, called Racah matrix. If the Hopf algebra has
a compatible norm, the transformation can be made unitary. If, additionally, the algebra is invariant under
complex conjugation, then the Racah matrix becomes orthogonal. We mostly consider the latter case, which
enforces either q2 ∈ R or |q| = 1 [3].

A tensor product of three arbitrary irreducible representations R1, R2, R3 acts in the space V1 ⊗ V2 ⊗ V3. It
can be decomposed into the direct sum of irreducible representations with possible multiplicities. Introducing
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representations Xi ⊂ R1 ⊗R2, Yj ⊂ R2 ⊗R3, Rµ ⊂ R1 ⊗R2 ⊗R3, we can write:

(R1 ⊗R2)⊗R3 =

(⊕
i

MR1,R2

Xi
⊗Xi

)
⊗R3 =

⊕
i,µ

MR1,R2

Xi
⊗MXi,R3

Rµ
⊗Rµ,

R1 ⊗ (R2 ⊗R3) = R1 ⊗

⊕
j

MR2,R3

Yj
⊗ Yj

 =
⊕
j,µ

M
R1,Yj
Rµ

⊗MR2,R3

Yj
⊗Rµ.

(5)

The representations in both decompositions are isomorphic, as it can be shown from character theory. However,
the isomorphism between multiplicity spaces of the same Rµ is not trivial. As Racah matrix acts non-trivially
only in the multiplicity space, the isomorphism can be written as follows.

Definition 1. Racah coefficients are elements of Racah matrix that is the map:

U

(
R1 R2

R3 R4

)
:
⊕
i

MR1,R2

Xi
⊗MXi,R3

R4
→
⊕
j

M
R1,Yj
R4

⊗MR2,R3

Yj
. (6)

Definition 2. Wigner 6-j symbol is the element of a normalized Racah matrix:{
R1 R2 Xi

R3 R4 Yj

}
=

1√
DXiDYj

Ui,j

(
R1 R2

R3 R4

)
. (7)

If multiplicity occurs, Xi may coincide and thus should have additional multiplicity indices. In this paper we
work with multiplicity-free case, so the arguments are in one to one correspondence with Young diagrams. Thus,
we do not distinguish representations and corresponding Young diagrams inside the arguments of 6-j symbols.

The Racah matrix can be explicitly written in terms of Clebsch-Gordan coefficients as the composition of
four unitary maps, acting in the space V1⊗V2⊗V3. However, the Racah matrix has a trivial indices inside every
irreducible representation, this means it is an invariant tensor and can be written canonically.

R-matrix. Algebra Uq(slN ) has a quasitriangular Hopf algebra structure [3]. It means there is an invertible
algebra element R called R-matrix. We do not define the R-matrix from Hopf algebra and refer to [3] for details.

Let us first fix the notation. The representation of R-matrix is denoted by Ri,j and acts on Vi ⊗ Vj . We
introduce the permutation operator Pi,j : Vi ⊗ Vj → Vj ⊗ Vi given by

P1,2(v1 ⊗ v2) = v2 ⊗ v1 ∀v1 ∈ V1,∀v2 ∈ V2 (8)

We can compare representations R1⊗R2 and P1,2(R2⊗R1)P−11,2 . In U(slN ) these representations are equivalent,
but in Uq(slN ) for q 6= 1 they are different due to the non-cocommutativity of the Hopf algebra. Operator
R̂1,2 = P1,2R1,2 restores the equivalence between them. For any representations R1, R2:

R̂1,2(R1 ⊗R2)R̂−11,2 = R2 ⊗R1, (9)

Also R-matrix have to satisfy so-called hexagon axioms:

R̂12,3 = (R̂1,3 ⊗ id)(id⊗ R̂2,3)

R̂1,23 = (id⊗ R̂1,3)(R̂1,2 ⊗ id)
(10)

If additionally we require R̂2,1R̂1,2 = Id, the algebra is called triangular. It is easy to check that for q = 1

Uq(slN ) becomes triangular with R̂1,2 = P1,2.
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These two equations connect a permutation between two reducible representations with permutations of
irreducible representations. It effectively means that we need the only R-matrix given for fundamental repre-
sentation to express R-matrix in any representation.

Let us write the action of R-matrices on arbitrary representations R1 ⊗R2 ⊗ · · · ⊗Rn:

Ři,i+1 = π(σi) = id⊗ · · · ⊗ id⊗ Pi,i+1Ri,i+1 ⊗ id⊗ · · · ⊗ id (11)

and analogously Řρ(i)ρ(j) for arbitrary permutation ρ ∈ Sn on Rρ(1)⊗· · ·⊗Rρ(n). The operators Ři are invertible
and associative, so they form a group. In fact, it is known as the representation of Artin braid group Bn.

Definition 3. The Artin braid group Bn on n strands is a group generated by σ the following relations:

σiσj = σjσi,

σiσjσi = σjσiσj ,

if |i− j| > 1

if |i− j| = 1, i, j = 1, . . . , n
(12)

The first property is trivially satisfied for Ři,i+1 = π(σi). The second property is the braiding property and
in quantum algebra it corresponds to the celebrated Yang-Baxter equation.

Definition 4. Yang-Baxter equation is the identity on R-matrices:

Ř1,2Ř1,3Ř2,3 = Ř2,3Ř1,3Ř1,2 (13)

As we will show below, this property follows from R-matrix definition, but sometimes R-matrix is defined
as the solution to Yang-Baxter equation. This approach lead to a greater number of solutions, e.g. R̂1,2 = P1,2

always satisfies the Yang-Baxter equation, but it does not form an quasitriangular Hopf algebra, unless q = 1

and it is triangular.
The eigenvalues of R-matrix representation has an explicit form [3] in terms of quadratic Casimir eigenvalues

κ. Given R1,2 acting in the space of R1⊗R2 =
⊕

iQi, where Qi can coincide, the eigenvalues are expressed as:

λi(R1,2) = ±qκQi−κR1
−κR2 , κ(Rµ) = κ(µ) =

∑
(i,j)∈µ

(i− j) (14)

where the sign depends on the choice of triple (R1, R2, Qi). If R1 6= R2, the sign is free to choose, but should
be consistent with other signs that were chosen. If R1 = R2, the sign is fixed to be ±1 depending on Qi being
from symmetric or antisymmetric part of the decomposition. See [11] for more details. In this paper we choose
a convention that for both R1 = R2 and R1 6= R2 we use the same rule. If we order all Qi Young diagrams
lexicographically, then the signs should alternate. The overall sign is chosen in a self-consistent way, that is, the
R-matrix axioms are satisfied.

1.2 General properties of multiplicity-free 6-j symbols

We recall that in this paper we assume that all 6-j symbols we work with are multiplicity-free except the opposite
is stated. The expressions with multiplicities a bit differs and can be found in [7, 2, 12].

Orthogonality and tetrahedral symmetry. Racah matrices are unitary, consequently, 6-j symbols satisfy
orthogonality relation [13]:

∑
R12

{
R1 R2 R12

R3 R123 R23

}{
R1 R2 R12

R3 R123 R′23

}
D12

√
D23D23′ = δR23R′

23
· I,

I = 1 if symbols exist

I = 0 in other case
(15)
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The presence of factor I is due to the fact that this relation should hold even if the left-hand side is trivial. If
some of the representations does not respect fusion rules, then the left-had side becomes zero, implying I = 0.
One may choose arbitrary R1, R2, R3, then the Racah matrix is non-trivial if and only if R4 ⊂ R1 ⊗R2 ⊗R3.

Definition 5. Tetrahedral symmetries are the symmetries between 6-j symbols [7] that are generated by relations

{
R1 R2 R12

R3 R123 R23

}
=

{
R3 R2 R23

R1 R123 R12

}
=

{
R3 R123 R12

R1 R2 R23

}
=

{
R2 R12 R1

R123 R23 R3

}
=

= ±

{
R2 R1 R12

R123 R3 R23

}
,

(16)

where the ± phase should be consistently defined in order to satisfy the Biedenharn-Elliott identity.

These symmetries can be derived from the properties of 3j-symbols [2]. Phases arise as the sign of R-matrix
eigenvalues. See [7, 11, 14] for the discussion on phase conventions. One can check that these symmetries form
a group of 24 elements isomorphic to S4, that is, the tetrahedron point group.

Racah back-coupling rule. One interesting property follows from the R-matrix properties.

Definition 6. The Racah back-coupling rule is a general property of 6-j symbols [7]:

qκa+κb+κc+κ123−κ12−κ23

{
a b R12

c R123 R23

}
=
∑
R13

±D13q
κ13

{
b a R12

c R123 R13

}{
a c R13

b R123 R23

}
(17)

Above we use the notations a, b, c for representations only to clarify the structure of equation.

Proposition 1. Racah back-coupling rule is equivalent to hexagon axioms of R-matrix.

Proof. The property can be proven using the R-matrix definition. Let us consider the first of the hexagon
axioms:

Ř12,3 = Ř1,3Ř2,3 (18)

We recall that from the spectral decomposition of R-matrices R2,3 acts as a constant map in each subspace V 23
i

from the space V2⊗ V3 =
⊕

iM
23
i ⊗ V 23

i . If we choose the basis of the highest weight, R-matrix becomes block-
diagonal, where different blocks correspond to different representations Yi with block size equal to multiplicity
dimM23

i . Moreover, we can make it diagonal by the specification of basis in multiplicity space, then each block
takes the form of unit matrix times the eigenvalue given by (14).

Let us now consider the whole space V1⊗V2⊗V3, in which id⊗R2,3 acts. We restrict ourselves to the particular
representation R4 ⊂ R1⊗R2⊗R3 without loss of generality. The corresponding subspace is

⊕
iM

1i
4 ⊗M23

i ⊗V123,
where the overall set of non-trivial i is such that M23

i 6= ∅ 6= M1i
4 . We can consider a Racah matrix that acts

on this subspace, transforming the highest weight basis of (R1 ⊗R2)⊗R3 into R1 ⊗ (R2 ⊗R3). Thus, the R1,2

eigenbasis transforms under the unitary rotation into the eigenbasis of R2,3.
The operator R12,3 is trickier as we should understand it as R12,3 =

⊕
iRi3, where i is enumerating all

irreducible representations from R1 ⊗ R2 = M12
i ⊗Xi. In this sense our restriction to the R4 makes each Ri3

just a constant map and possible rotation in the multiplicity space, whereas the whole R12,3 is again block-
diagonal and depends on Xi. It makes R12,3 and R1,2 very similar. In fact, if we compare their eigenvalues, we
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make a conclusion that:

R12,3 = qκ4−κ1−κ2−κ3 · R−11,2 ⊗ id (19)

If we decompose each matrix Ra,b = W R̃a,bU , where W,U are unitary and R̃a,b is diagonal. Then the equation
becomes:

ˇ̃R1,2U312
ˇ̃R1,3U

†
132

ˇ̃R2,3U123 = P123 · qκ4−κ1−κ2−κ3 , P123((v1 ⊗ v2)⊗ v3) := v3 ⊗ (v2 ⊗ v1) (20)

We can see that unitary matrices are in fact Racah matrices with identification U123 = U

(
R1 R2

R3 R4

)
, the same

for U132, U312. If we normalize the equation, write it in terms of 6-j symbols and use tetrahedral symmetry
U123 = U†321, we will get exactly the Racah back-coupling rule.

Corollary 1. Racah back-coupling rule implies the Yang-Baxter equation.

Proof. The other equation from R-matrix definition, namely

Ř1,23 = Ř1,3Ř1,2 (21)

leads to the similar condition on Racah matrices:

U321
ˇ̃R2,3U

†
231

ˇ̃R1,3U213
ˇ̃R1,2 = P123 · qκ4−κ1−κ2−κ3 (22)

This will lead to the same back-coupling rule as (20).
Normalized or not, equations (20) and (22) have identical right-hand side and thus we can write:

ˇ̃R1,2U312
ˇ̃R1,3U

†
132

ˇ̃R2,3U123 = U321
ˇ̃R2,3U

†
231

ˇ̃R1,3U213
ˇ̃R1,2 (23)

which is exactly the Yang-Baxter equation. As both (20) and (22) are equivalent up to a normalization and the
Yang-Baxter equation is homogeneous, the Racah back-coupling rule leads to the Yang-Baxter equation. The
opposite is not true.

Pentagon relation. The following condition on 6-j symbol is central for our discussion. It does not involve
R-matrices and in fact more general. If we consider the product of four representations, there are five ways to
decompose them:

((R1 ⊗R2)⊗R3)⊗R4

(R1 ⊗ (R2 ⊗R3))⊗R4

(R1 ⊗R2)⊗ (R3 ⊗R4)

R1 ⊗ ((R2 ⊗R3)⊗R4)

R1 ⊗ (R2 ⊗ (R3 ⊗R4))

(24)

These decompositions correspond to five different bases, which can be transformed one into another by Racah
matrix. The new idea here is that the transformation can be done in two distinct ways. Let us consider for
example the transformation:

W : ((R1 ⊗R2)⊗R3)⊗R4 → R1 ⊗ (R2 ⊗ (R3 ⊗R4)) (25)
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Then W can be written ether as W ′ or as W ′′:

W ′ = (1⊗ U234)U1,23.4(U123 ⊗ 1)

W ′′ = U1,2,34U12.3.4

(26)

As the basis is determined by the product order uniquely, we should have the equality W = W ′. The corre-
sponding commutative diagram can be written with a tree denoting the basis in the multiplicity space:

j1

j

j2 j3 j4

j12

j123

j1

j

j2 j3 j4

j23

j123

j1

j234

j2 j3 j4

j23

j

j1

j

j2 j3 j4

j34j12

j1

j234

j2 j3 j4

j34

j

U123⊗1

U12,3,4

U1,23,4

1⊗U234

U1,2,34

This identity is known as pentagon equation, or, specifically for 6-j symbols, it is called after Biedenharn and
Elliott.

Definition 7. The generalized Biedenharn-Elliott identity, or pentagon identity [15] is

∑
R23

D23

{
R1 R2 R12

R3 R123 R23

}{
R1 R23 R123

R4 R1234 R234

}{
R2 R3 R23

R4 R234 R34

}
= (27)

=

{
R12 R3 R123

R4 R1234 R34

}{
R1 R2 R12

R34 R1234 R234

}

This equation has a lot of nice properties, for example:

Proposition 2. The pentagon identity imply the 6-j symbols orthogonality relation.

Proof. We set R1234 to be a trivial representation and denote its Young diagram as J0K. The expression is either
of the form 0 = 0 or non-trivial depending on other representations. The only non-trivial equation is present
when R123 = R4 and R234 = R1. We additionally denote R34 as R′12.

∑
R23

D23

{
R1 R2 R12

R3 R4 R23

}{
R1 R23 R4

R4 J0K R1

}{
R2 R3 R23

R4 R1 R′12

}
= (28)

=

{
R12 R3 R4

R4 J0K R′12

}{
R1 R2 R12

R′12 J0K R1

}

6-j symbols with one trivial representation correspond to unitary matrix of dimension 1 and called trivial 6-j
symbols. All of them are ±1 up to a normalization.{

R1 R2 R12

R′12 J0K R′1

}
=
±δR12R′

12
δR1R′

1√
D1D4

(29)
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Substitution of trivial 6-j symbols into pentagon give us:

∑
R23

D23

{
R1 R2 R12

R3 R4 R23

}{
R2 R3 R23

R4 R1 R′12

}
=
±δR12R′

12√
D12D′12

(30)

which becomes the orthogonality relation if we perform tetrahedral symmetry.

Summary. We have stated the main properties of 6-j symbols in ths subsection. They can be divided into
symmetries and identities. For arbitrary 6-j symbol only tetrahedral symmetries are known to hold. Two main
identities are the pentagon identity and the Racah back-coupling rule. The Yang-Baxter equation and the
orthogonality can be deduced from the main two properties:

1. Pentagon equation ⇒ Orthogonality relation

2. Racah back-coupling rule ⇒ Yang-Baxter equation

Interestingly, the first and the second lines are very different. There is no obvious way to connect these properties.
The first line is defined without R-matrix. The pentagon identity is a very strong condition on 6-j symbols.
However, it can not determine the 6-j symbol by itself, but rather recursively expand it. The second line is
not a strong constraint on 6-j symbols itself, one may compare the number of variables in the equation with
the number of equation components. It can not fix Racah matrices of arbitrary size even with orthogonality
condition imposed.

We combine these two identities to determine the 6-j symbol. Roughly speaking, we solve the pentagon
identity in terms of primitive 6-j symbols for a wide class of 6-j symbols. Then we show that using the Racah
back-coupling rule to determine the primitive 6-j symbols. In particular, we solve the pentagon identity in the
class of symmetric and conjugate to symmetric representations.

1.3 q-Hypergeometric series and Racah polynomial

There is a strong connection between 6-j symbols, q-hypergeometric series and orthogonal polynomials. That is,
properly normalized 6-j symbols at least for Uq(sl2) can be expressed as a terminating q-hypergeometric series.
Moreover, it is equal to a q-Racah polynomial. This property singles out 6-j symbols among other objects and
it can be used for calculations as orthogonal polynomial always can be defined recursively.

In this subsection we recall the notion of q-hypergeometric series [16] and some essential facts from the theory
of orthogonal polynomials.

q-Hypergeometric series. A q-Pochhammer symbol is defined as (a, q)n =
∏n−1
k=0(1− aqk), which is closely

related to quantum factorial [a]! =
∏a
i=1[a].

Definition 8. The q-hypergeometric series are defined as:

p+1φp

(
a1, . . . , ap+1

b1, . . . , bp
; q, z

)
:=

∞∑
n=0

(a1, q)n . . . (ap+1, q)n
(b1, q)n . . . (bp, q)n(q, q)n

zn, (31)

or, alternatively, it can be also written as:

p+1Φp

(
a1, . . . , ap, ap+1

b1, . . . , bp
; q, z

)
:= p+1φp

(
qa1 , . . . , qap , qap+1

qb1 , . . . , qbp
; q, z

)
. (32)
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It is far more convenient because it may be reformulated in terms of q-factorials:

p+1Φp

(
a1 + 1, . . . , ap + 1, ap+1 + 1

b1 + 1, . . . , bp + 1
; q, z

)
=

∞∑
n=0

[a1 + n]!

[a1]!
. . .

[ap+1 + n]!

[ap+1]!

[b1]!

[b1 + n]!
. . .

[bp]!

[bp + n]!

zn

[n]!
. (33)

This expression evidently has the limit lim
q→1

[a]! = a!, where the whole series becomes a usual hypergeometric

function.
There are a lot of hypergeometric function symmetries generated by the following property.

Definition 9. Permutation symmetry is the evident property of rΦp functions to be invariant under permuta-
tions ω ∈ Sr and u ∈ Sp:

rΦp

(
a1, . . . , ar

b1, . . . , bp
; q, z

)
= rΦp

(
aω(1), . . . , aω(r)

bu(1), . . . , bu(p)
; q, z

)
. (34)

The r+1Φr series with the constraint on the sum of arguments 1 +
r+1∑
i=1

ai =
r∑
i=1

bi and with z = q are called

Saalschützian one. There is a particular series we are are interested a lot, namely, Saalschützian 4Φ3.

Definition 10. Sears’ transformation [16] is the relation between two Saalschützian 4Φ3 functions:

4Φ3

(
x, y, z, n

u, v, w
; q, q

)
=

[v−z−n−1]![u−z−n−1]![v−1]![u−1]!

[v−z−1]![v−n−1]![u−z−1]![u−n−1]!
4Φ3

(
w − x,w − y, z, n

1−u+z+n, 1−v+z+n,w
; q, q

)
, (35)

where x+ y + z + n+ 1 = u+ v + w.

For Saalschützian 4Φ3 both permutation symmetry and Sears’ transformation form a large group of symme-
tries [17, 6].

6-j symbol known expressions. The 6-j symbols are known to be connected with q-hypergeometric series
at least for Uq(sl2) algebra [18]. In this case each argument of 6-j symbol is a one-row Young diagram which is
parametrized by a non-negative integer. The correspondence follows form the following result [4].

Proposition 3. Arbitrary Uq(sl2) 6-j symbol up to a monomial factor is equal to a terminating Saalschützian
q-hypergeometric series 4Φ3:

{
Js1K Js2K JiK
Js3K Js4K JjK

}
= K · 4Φ3

(
a1, a2, a3, a4

b1, b2, b3
; q, q

)
, 2ai =


−s1 − s2 + i

−s3 − s4 + i

−s1 − s4 + j

−s2 − s3 + j

 , 2bi =

−s1 − s2 − s3 − s4 − 2

i+ j − s2 − s4 + 2

i+ j − s1 − s3 + 2

 . (36)

and the monomial factor is:

K =
θ (s1, s2, i) θ (s3, s4, i) θ (s1, s4, j) θ (s2, s3, j) [ s1+s2+s3+s42 + 1]!

[ s3+s4−i2 ]![ s1+s2−i2 ]![ s2+s3−j2 ]![ s1+s4−j2 ]![ i+j−s2−s42 ]![ i+j−s1−s32 ]!
, θ(a, b, c) :=

√
[a+b−c2 ]![ c+a−b2 ]![ b+c−a2 ]!

[a+b+c2 + 1]!
. (37)

There are Racah matrices in Uq(slN ) with only symmetric and conjugate to symmetric R1, R2, R3 represen-
tations in arguments. The corresponding 6-j symbols will have a relatively simple form. There are two types of
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such 6-j symbols we are interested the most.

type I+ :

{
Js1K Js2K R12

Js3K Js4, cN−24 K R23

}
type II+ :

{
Js1K Js2K R12

Js3K Js4, cN−24 K R23

}
(38)

Here one may see that the family of possible R12 and R23 is enumerated by one parameter. From fusion rules it
is easy to derive for the first type R(i)

12 = Ji, s2−s1+i2

N−2K, R(j)
23 = Jj, s2−s3+j2

N−2
K. There is a linear relation on

type I+ arguments from fusion rules s1 + s3 − s2 − s4 = −2c4, we choose to work with arbitrary si and assume
that c4 satisfy this relation. The special case when c4 = 0 is called type I and correspond to a simpler situation
when the fourth representation is symmetric [7]. Similarly, the second type has R(i)

12 = J s1+s2+i2 , s1+s2−i2 K and
R

(j)
23 = Jj, s2−s3+j2

N−2
K. The restrictions require equalities:

s1 + s3 − s2 − s4 = −2c4 for type I+, s1 + s3 = s2 + s4 for type I,

s1 + s2 − s3 − s4 = −2c4 for type II+, s1 + s2 = s3 + s4 for type II.
(39)

We use these classes of symbols a lot in this work, so it is convenient to improve our notation specifically for
these two types. The expressions for them are almost the same, so we denote 6-j symbol of type I and I+ as:

[
s1 s2 i

s3 s4 j

]
1

:=

Js1K Js2K
r
i, s2−s1+i2

N−2
z

Js3K Js4, cN−24 K
r
j, s2−s3+j2

N−2z

 , (40)

and type II, II+:[
s1 s2 i

s3 s4 j

]
2

:=

{
Js1K Js2K

q
s1+s2+i

2 , s1+s2−i2

y

Js3K Js4, cN−24 K
r
j, s2−s3+j2

N−2z
}
, (41)

where i, j are defined in such a way in order to have a nice N = 2 limit.
The expression for type I and type II depends on q and 7 integer parameters, i.e. 6 for representations and

N . The answer was conjectured in [1] and was later written in terms of Saalschützian 4Φ3 [6].

Conjecture 1. Multiplicity-free Uq(slN ) 6-j symbol expression is given by the formula [1, 6] is[
r1 r2 i

r3 r4 j

]
T

= KT · 4Φ3

(
a1, a2, a3, a4

b1, b2, b3
; q, q

)
, (42)

2ai =


−r1 − r2 + i− 2(N − 2)δT,2

−r3 − r4 + i

−r1 − r4 + j

−r2 − r3 + j

 , 2bi =

 −r1 − r2 − r3 − r4 − 2(N − 1)

i+ j − r2 − r4 + 2

i+ j − r1 − r3 + 2 + 2(N − 2)δT,1

 . (43)

where r1 + r3 = r2 + r4 for type I and r1 + r2 = r3 + r4 for type II. The factor is given by

KT =
θN (r1, r2, i) θN (r3, r4, i) θN (r1, r4, j) θN (r2, r3, j) [N − 1]q![N − 2]q![

r1+r2+r3+r4
2

+N − 1]q!

[ r3+r4−i
2

]q![
r1+r2−i

2
+ (N − 2)δT,2]q![

r2+r3−j
2

]q![
r1+r4−j

2
]q![

i+j−r2−r4
2

]q![
i+j−r1−r3

2
+ (N − 2)δT,1]q!

. (44)

All considered examples confirm this expression. The aim of this paper is to prove this formula. Also the
developed method allow us to obtain an expression for types I+ and II+ in terms of q-Racah polynomial.

Orthogonal polynomials.

Definition 11. q-Racah polynomials are a set of orthogonal polynomials [19] defined as a Saalschützian q-
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hypergeometric series 4Φ3:

Rn(ν(x);α, β, γ, δ|q) = 4Φ3

(
−n, n+ α+ β + 1,−x, x+ γ + δ + 1

α+ 1, β + δ + 1, γ + 1
; q, q

)
n = 0, 1, . . . L (45)

where n is the degree of the polynomial in ν(x) := q−x + qγ+δ+x+1, L is non-negative and have on of the three
possible values:

L =

 −α− 1

−β − δ − 1

−γ − 1

(46)

The condition of L non-negativity implies that the series is terminating. It is indeed a polynomial in ν(x) as
the dependence on x is:

(q−x, qx+γ+δ+1; q)x =

k−1∏
j=0

(1− ν(x)qj + qγ+δ+2j+1) (47)

From the equation for 6-j symbol in Uq(sl2) it is possible to relate it with a q-Racah polynomial, because the
terminating Saalschützian 4Φ3 series is in fact the Racah polynomial. In particular, orthogonality of 6-j symbols
and Racah polynomials is the same equality written in different terms. Other properties also can be translated
between these two objects.

As orthogonal polynomials, they obey the following set of identities. For brevity we omit parameters
α, β, γ, δ, q in Rn(ν(x)). By convention, in a recurrence relations R−1(ν(x)) is set to 0.

• Three-term recurrence relation (3TRR):

[x][x+ γ + δ + 1]Rn(ν(x)) = AnRn+1(ν(x))− (An + Cn)Rn(ν(x)) + CnRn−1(ν(x)) (48)

with coefficients specified for q-Racah polynomial:

An =
[n+ α+ 1][n+ α+ β + 1][n+ β + δ + 1][n+ γ + 1]

[2n+ α+ β + 1][2n+ α+ β + 2]

Cn =
[n][n+ α+ β − γ][n+ α− δ][n+ β]

[2n+ α+ β][2n+ α+ β + 1]

(49)

• Orthogonality relation:

L∑
x=0

(qα+1, qβ+δ+1, qγ+1, qγ+δ+1; q)x
(q, qγ−α+δ+1, qγ−β+1, qδ+1; q)x

[γ + δ + 2x+ 1]

qx(α+β)[γ + δ + 1]
Rn(ν(x))Rm(ν(x)) = hnδmn

hn =
(qγ−α−β , qδ−α, q−β , qγ+δ+2; q)∞

(q−α−β−1, qγ−α+δ+1, qγ−β+1, qδ+1; q)∞

[α+ β + 1]qn(γ+δ)

[α+ β + 2n+ 1]

(1, qα+β−γ+1, qα−δ+1, qβ+1; q)n
(qα+1, qα+β+1, qβ+δ+1, qγ+1; q)n

(50)

Proposition 4. Each orthogonal polynomial sequence possess a three-term recurrence relation.

The proof of this fact is rather simple and can be found in the literature. Let us assume we work with
orthogonal discrete polynomials pn(x) defined on 0 ≤ x ≤ N − 1 for 0 ≤ n ≤ N − 1, x, n ∈ Z. The naive
estimation of a free parameters in this system from the orthogonality is N(N−1)

2 . However, as it can be seen,
a three-term recurrence relation allow us to use only 3N coefficients, which does not depend on x, to fully
determine the polynomials.
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The three-term recurrence relation can help a lot if we do not know the polynomials explicitly, but we
can obtain the 3TRR on them and it is identical to some known polynomial’s 3TRR. Obviously, the set of
polynomials is the same in this case. It is reasonable to ask whether the orthogonality relation is the same or
not. The important result is that the orthogonality measure is unique [19].

The monic polynomial is a polynomial yn(x) =
∑i
n=0 kix

i with the normalization condition kn = 1.

Theorem 1 (Favard’s Theorem). Let yn denote the monic polynomial of degree n ∈ {0, 1, 2, . . . } satisfying the
three-term recurrence relation

yn+1(x) = (x− cn)yn(x)− dnyn−1(x), cn, dn ∈ C, n = 1, 2, 3, . . . (51)

Then there exists a unique linear functional Λ with

Λ(1) = 1, Λ(ynym) = 0, for n 6= m, m, n ∈ {0, 1, 2, . . . } (52)

This linear functional Λ is quasi-definite if and only if dn = 0 for all n = 1, 2, 3, . . . . This linear functional Λ is
positive-definite if and only if cn ∈ R for all n = 0, 1, 2, . . . and dn > 0 for all n = 1, 2, 3, . . . .

1.4 Relation between 6-j symbols and orthogonal polynomials

In this paper we show that multiplicity-free 6-j symbols possess a three-term recurrence relation. The derivation
only uses pentagon identity and fusion rules. This derivation allow one to say a lot about 6-j symbols.

We can illustrate the relationship between different objects by the following diagram.

• (Pen) Pentagon equation

• (Un) Racah matrix unitarity, 6-j symbol orthogonality

• (3TR) Three-term recurrence relation

• (OP) Orthogonal polynomial sequence

• (6j) Expression for arbitrary 6-j symbols

Pen Un 6j

3TR OP

Pr. 2

This paper
yn(x)=Uxn

Th. 1

Pr. 4

Th. 1

In the upper row we place the properties of 6-j symbols coming from the Hopf algebra. We have already
shown that 6-j symbols are always orthogonal and satisfy pentagon equation. Due to the Proposition 2 any
pentagon equation solution implies orthogonality.

The lower row is about orthogonal polynomials, the main result here is the Favard’s theorem. It guarantees
that the three-term recurrence relation uniquely determines not only polynomials but also the orthogonality
measure. This orthogonality relation coincides with 6-j symbol’s one due to the uniqueness. It is very helpful,
because this identifies the abstract orthogonality from the theorem with 6-j symbols which are orthogonal in a
very clear sense.

This identification between 6-j symbols and orthogonal polynomials allow us to write a diagonal arrow,
although we do not know the expression for 6-j symbols. We now may ask what is the source of three-term
recurrence relation on 6-j symbols. For Uq(sl2) it was shown that the pentagon equation can be reduced to the
recurrent relation and solved explicitly [18, 2]. In the case of Uq(slN ) the pentagon equation is much harder to
handle due to the not obvious structure of representation tensor products.

In this paper we fill this gap and write the three-term relation on the class of Uq(slN ) symbols with two
symmetric and one rectangular representation. Corresponding to the written diagram above, we can start with
the abstract pentagon equation and derive 6-j symbols in a unique way. Thus, explicit 6-j symbol formula is
unique if the coefficients of 3TRR are obtained in a unique way. We can state three main achieved results.
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• We proved that the wide class of multiplicity-free 6-j symbols are orthogonal polynomials with a certain
three-term relation.

• This also implies that the pentagon equation has a unique solution.

• For a lesser subclass we get three-term relation and solve it, obtaining the explicit form for 6-j symbols in
terms of Racah polynomials.
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2 Three-term recurrence relation for 6-j symbols

2.1 Three-term relation for 6-j symbols with rectangular representation

Let us clarify the notation. We denote by J the representation that is from one of the three classes: symmetric
JsK, conjugate to symmetric JsN−1K or antisymmetric J1kK for s ≥ 0, k ≥ 0. We write symmetric representations
as S. Rectangular representation JskK is denoted by T . We use ε± for either fundamental or antifundamental
representation, that is ε+ = J1K, ε− = J1N−1K.

Lemma 1. Consider a product of representations T2 ⊗ J3 ⊗ ε±, which is decomposed into R23 ⊂ T2 ⊗ J3,
J34 ⊂ J3 ⊗ ε± and R234 ⊂ T2 ⊗ J3 ⊗ ε±. Fixing all representations except R23 there are only two possible
representations for R23 in the product.

Proof. All possible sequences of decompositions of the triple product T2 ⊗ J3 ⊗ ε± can be written as follows:

T2 J3 ε±

R23 J34

R234

R23 ⊂ T2 ⊗ J3, J34 ⊂ J3 ⊗ ε±

R234 = (R23 ⊗ ε±) ∩ (T2 ⊗ J34)
(53)

The general form of R234 as a representation from T2 ⊗ J34 can be written as Ja, bk, cK, Jbk, a, cN−k−2K or
J(b + 1)a, bk−a, 1cK for J34 being symmetric, conjugate to symmetric or antisymmetric. Considering the case
ε± = ε− we find R23 as the decomposition of R234 ⊗ ε+. Let us decompose the product R234 ⊗ ε+ in each case
using Littlewood-Richardson rules.

Ja, bk, cK⊗ J1K = Ja+ 1, bk, cK⊕ Ja, bk, c+ 1K⊕ Ja, b+ 1, bk−1, cK⊕ Ja, bk, c, 1K

Jbk, a, cN−k−2K⊗ J1K = Jbk, a+ 1, cN−k−2K⊕ J(b− 1)k, a− 1, (c− 1)N−k−2K⊕

⊕Jb+ 1, bk−1, a, cN−k−2K⊕ Jbk, a, c+ 1, cN−k−3K

J(b+ 1)a, bk−a, 1cK⊗ J1K = J(b+ 1)a+1, bk−a−1, 1cK⊕ J(b+ 1)a, bk−a, 1c+1K⊕

⊕Jb+ 2, (b+ 1)a−1, bk−a, 1cK⊕ J(b+ 1)a, bk−a, 2, 1c−1K

(54)

Note that we have decomposed R234⊗ε+ ⊂ (T2⊗J34)⊗ε+, but the decomposition for T2⊗J3 ⊂ T2⊗(J34⊗ε+) is
different. We underline the terms that can not lie in the decomposition T2⊗J3. The lasting terms are in general
lead to non-trivial representation with corresponding 6-j symbols. In degenerate cases, e.g. a = b or k = 0 some of
the irreducible components may coincide or not exist. However, the number of possible terms is not greater than
two. The product R234⊗ε− is analogous. One also can express it via the conjugation as R234 ⊗ ε− = R234⊗ε+.
One can see from the general form of R234 that R234 lie in the same class of representations. Thus, R234 ⊗ ε±

always produce at most two R23 that is compatible with iterative 6-j symbol.

Definition 12. 6-j symbols with one (anti-)fundamental representation ε± are called the primitive ones. All of
them can be written in the form{

R1 R23 R123

ε± R1234 R234

}
(55)

Lemma 2. Pentagon equation implies a recurrence on 6-j symbols of the form{
R1 R2 R12

R3 R123 R2345

}
=
∑
i

Ci

{
R1 R2 R12

R3 R123 R
(i)
23

}
(56)
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where Ci are some combinations of primitive 6-j symbols.

Proof. The pentagon relation in a general form is written in (27). After specifying R4 = ε± it reads:{
R1 R2 R12

R34 R1234 R234

}{
R12 R3 R123

ε± R1234 R34

}
= (57)

=
∑
R23

D23

{
R1 R2 R12

R3 R123 R23

}{
R1 R23 R123

ε± R1234 R234

}{
R2 R3 R23

ε± R234 R34

}

We observe that the relation have three primitive 6-j symbols with argument ε±.
Although the primitive 6-j symbols general expression is not known, they can be computed in each particular

case from the representation theory. We are not interested in them for now, so we treat them as coefficients.
Let us focus on the symbols with no ε± in arguments, they form a linear combination that can be seen as a
recursion. Indeed, the first row arguments are the same for all non-primitive 6-j symbols, whereas the second
row arguments on the left-hand side are R34 ⊂ R3⊗ε±, R1234 ⊂ R123⊗ε±, R234 ⊂ R23⊗ε±. If one set ε± = ε+,
this relation is able to recursively expand each 6-j symbol in terms of primitive ones.

We now want to construct a recursion which does not iterates through R3 and R123, motivated by the three-
term recurrence relation where only the argument which correspond to the order of polynomial change. For
this reason we take two recurrence relations from the previous step corresponding to ε+ and ε− and make a
composition of them. With the standard notation where Rab ⊂ Ra ⊗Rb two recurrences are:{

R1 R2 R12

R345 R12345 R2345

}
=
∑
i

C+
i

{
R1 R2 R12

R34 R1234 R
(i)
234

}
(58){

R1 R2 R12

R34 R1234 R
(i)
234

}
=
∑
j

C−i,j

{
R1 R2 R12

R3 R123 R
(i,j)
23

}
(59)

For brevity we denoted all products of primitive 6-j symbols as C±i , where ± sign depends on the choice of ε±.
In particular, R34 ⊂ R3 ⊗ ε− and R345 ⊂ R34 ⊗ ε+.

As the equation is obtained as a specification of the pentagon equation, there is no restrictions on represen-
tations except R(i)

234 and R(i,j)
23 , which are summed up. Hence, we are free to specify for example R345 = R3. The

worst scenario is that 6-j symbols become zero and the identity is trivial in this case. From the representation
theory it is known that in the decomposition of R ⊗ ε− ⊗ ε+ there is always representation R ⊂ R ⊗ ε− ⊗ ε+.
Thus, we specify R345 = R3, R12345 = R123. After the substitution of one equation into another we obtain the
recurrence:{

R1 R2 R12

R3 R123 R2345

}
=
∑
i

∑
j

C+
i C
−
ij

{
R1 R2 R12

R3 R123 R
(i,j)
23

}
(60)

Note, that the recurrence is not unique. First, there are in general a freedom in the choice of R1234 and R34 that
leads to a nonequivalent recurrence relation. We also could use the different order in the product R3 ⊗ ε+ ⊗ ε−,
it leads to a more complex, but equivalent expression.

Proposition 5. 6-j symbols

{
J1 T2 R12

J3 R123 R23

}
satisfy a three-term relation.

Proof. Let us make the recurrence arising from the Lemma 2 the three-term one. We make a specification
R1 = J1, R2 = T2, R3 = J3, R34 = J34. The decomposition of J1 ⊗ T2 ⊗ J3 is multiplicity-free, so the pentagon
identity can be written in a multiplicity-free form. The coefficients are expressed in terms of primitive 6-j symbols
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and quantum dimensions Di = dim(R
(i)
23 ), Dij = dim(R

(i,j)
23 ).

C+
i C
−
ij =

DiDij

{
J1 R

(i)
234 R1234

J1K R123 R
(0)
23

}{
T2 J34 R

(i)
234

J1K R
(0)
23 J3

}{
J1 R

(i+j)
23 R123

J1K R1234 R
(i)
234

}{
T2 J3 R

(i+j)
23

J1K R
(i)
234 J34

}
{
R12 J34 R1234

J1K R123 J3

}{
R12 J3 R123

J1K R1234 J34

} (61)

From the Lemma 1 the double sum have 4 terms. We show that the recursion from pentagon equation has only
three 6-j distinct symbols, meaning that three out of five 6-j symbols coincide. We want to use the pentagon
equation as a recurrence on the non-primitive 6-j symbols. Thus, we assume that all representations in the
non-primitive 6-j symbols have no constraints. To show that the double sum is indeed three-term we should use
the restrictions on R(i,j)

23 from primitive 6-j symbols in C+
i , C

−
j .

All restrictions on R(i)
234 and R(i,j)

23 can be found from the following diagram:

T2 J3 ε− ε+

R
(i,j)
23 J34 −

R
(i)
234 J345

R2345

R
(i,j)
23 :

R
(i,j)
23 ⊗ J1K ⊃ R(i)

234

T2 ⊗ J3 ⊃ R(i,j)
23

,

R
(i)
234 :

R
(i)
234 ⊗ J1K ⊃ R2345

T2 ⊗ J34 ⊃ R(i)
234

(62)

The restriction in the second rows for R(i)
234 and R(i,j)

23 is already imposed by non-primitive 6-j symbols and in
general leaves more than two terms. The restriction that makes each sum two-term is in the first line for both
R

(i)
234 and R(i,j)

23 . We are able to apply Lemma 1 for R(i)
234, so there are only two non-trivial R(i)

234. We set i = −1

for one of them and i = −1 for another.

Example 1. Let N ≥ 4, T2, Ji are symmetric representations R2345 = Ja, bK, R5 = J1K. All possible R(i)
234’s can

be obtained as:

R2345 ⊗ J1N−1K = Ja− 1, bK⊕ Ja, b− 1K⊕ Ja+ 1, b+ 1, 1N−3K (63)

The first summand is absent if a = b, so in principle the recurrence can have even lesser terms.

The appropriate R(i,j)
23 are found in the same way. There are again two-terms and the double sum have four

summands, but two of them coincide. This fact can be easily understood from the following example:

Example 2. With assumptions of the previous example there are four appropriate R(i,j)
23 ’s that can occur in the

sum. We take only appropriate terms from the previous example and multiply them by J1N−1K:

R
(i,j)
23 ⊂

(⊕
i

R
(i)
23

)
⊗ J1K = Ja− 1, b+ 1K⊕ 2Ja, bK⊕ Ja+ 1, b− 1K⊕ Ja− 1, b, 1K⊕ Ja, b− 1, 1K (64)

If 0 ≤ a − b < 2 some of these terms are zero. The same argument can be applied to the other classes of
representations J3, namely conjugate to symmetric and antisymmetric.

We set j = ±1 in a way that two coinciding terms have (i, j) equal to (1.− 1), (−1, 1). Then we improve our
notation and denote R(i,j)

23 by R(i+j)
23 , we have just shown it is consistent. We specify R2345 = R

(0)
23 , which makes
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the recurrence three-term. The resulting relation has the form:

∑
i=±1

∑
j=±1

(
DiDij

{
J1 R

(i)
234 R1234

J1K R123 R
(0)
23

}{
T2 J34 R

(i)
234

J1K R
(0)
23 J3

}
×

×

{
J1 R

(i+j)
23 R123

J1K R1234 R
(i)
234

}{
T2 J3 R

(i+j)
23

J1K R
(i)
234 J34

}
×

{
J1 T2 R12

J3 R123 R
(i+j)
23

})
= (65)

=

{
R12 J34 R1234

J1K R123 J3

}{
R12 J3 R123

J1K R1234 J34

}
×

{
J1 T2 R12

J3 R123 R
(0)
23

}

Now let us identify the polynomial which correspond to 6-j symbol.
The three-term recurrence relation for orthogonal polynomial yn(x, α) of order n = 0 . . . L in variable ν(x),

x = 0 . . . L with parameters α = {αi} has the form:

Anyn+1(x, α) +Bnyn(x, α) + Cnyn−1(x, α) = ν(x)yn(x, α) (66)

We assume that coefficients depend on α: An(α), Bn(α), Cn(α), but for brevity we omit it. As we can see, the
only changing argument is degree n. In the case of 6-j symbols the recurrence is connected with representation
R23. For the product T2 ⊗ J3 one can introduce a linear ordering of R(2j)

23 by parameter j. In our notation
parameter j takes even integer values and it is bounded by some jmin and jmax. Their values can be understood
from the fusion rules, because there are only finite non-trivial R(2j)

23 .

Example 3. Let us consider symmetric Ji = JsiK, T2 = Jsk2K and s2 ≥ s3. Then the 6-j symbol we write the
recurrence for is{

Js1K Jsk2K R12

Js3K R123 R
(2j)
23

}
, R2j

23 = Js2 + s3 − j, sk−12 , jK = Js2 + j̃, sk−12 , s3 − j̃K (67)

Two possible choices of j are presented. To connect this with polynomial we need to identify i with n, one can
chose any of two possibilities, it is just a convention to work either with yn(x, α) and ν(x) or y−n(x, α) and
ν(x)−1.

Thus, we state that n = j+ const and L = |jmax− jmin|. The same situation with x, which is identified with
R12. We define x = 0 . . . L and x = i+ const in R(i)

12 ⊂ J1 ⊗ T2.
The value of ν(x) is just a factor in front of yn(x, α) that should depend on x. From the perspective of 6-j

symbols it is

ν(x) =

∣∣∣∣∣
{
R

(x)
12 J34 R1234

J1K R123 J3

}∣∣∣∣∣
2

(68)

It is the only term that has argument R12, so we use it as a definition of variable ν(x). All remaining terms in
front of yn(x, α) are summands in Bn, that is, the terms with i+ j = 0 in the sum. An and Cn are determined
analogously, An is in front of the yn+1(x, α), hence it is coming from he term with i+ j = 2.

As the three-term relation is homogeneous we can multiply all polynomials by the same f(α) and still get a
solution, so it is not unique. To fix the dependence on parameters we need orthogonality relation. It fixes all
remaining freedom and the polynomial is uniquely determined.
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Let us summarize the result.

An

{
J1 T2 R12

J3 R123 R
(−2)
23

}
+Bn

{
J1 T2 R12

J3 R123 R
(0)
23

}
+ Cn

{
J1 T2 R12

J3 R123 R
(+2)
23

}
= ν(x)

{
J1 T2 R12

J3 R123 R
(0)
23

}
(69)

yn(x) =

{
J1 T2 R12

J3 R123 R
(0)
23

}
, ν(x) =

∣∣∣∣∣
{
R12 J34 R1234

J1K R123 J3

}∣∣∣∣∣
2

(70)

Bn =
∑
i=±1

D
(i)
234D

(0)
23

∣∣∣∣∣
{
J1 R

(i)
234 R1234

J1K R123 R
(0)
23

}{
T2 J34 R

(i)
234

J1K R
(0)
23 J3

}∣∣∣∣∣
2

(71)

i = 1 An

i = −1 Cn

]
= D

(i)
234D

(2i)
23

{
J1 R

(i)
234 R1234

J1K R123 R
(0)
23

}{
T2 J34 R

(i)
234

J1K R
(0)
23 J3

}
×

×

{
J1 R

(2i)
23 R123

J1K R1234 R
(i)
234

}{
T2 J3 R

(2i)
23

J1K R
(i)
234 J34

} (72)

2.2 Three-term relation for general multiplicity-free 6-j symbols

The method applied in this section can be applied in a far more general setting. In fact, we are able to do
exactly the same procedure with an arbitrary multiplicity-free 6-j symbol and obtain a three-term relation.

By the words “general multiplicity-free 6-j symbol” we wean the 6-j symbol of the form

{
J1 R2 R12

J3 R123 R23

}
or any other 6-j symbol obtained from it by tetrahedral symmetries. It is general in a sense that if Ri can
be arbitrary the only J1, J3 that leave the 6-j symbol multiplicity-free are either symmetric, or conjugate to
symmetric or antisymmetric representations. There are many other multiplicity-free 6-j symbols, but they have
restrictions on the form of at least three arguments, whereas we are considering the 6-j symbol with only two
specifications.

All representations are defined as in the previous subsection. J34 is uniquely determined as the only J34 ⊂
J3 ⊗ ε−. Considering R1234, we need to specify it as it can not be determined from fusion rules. We denote
ei = (0, . . . , 0, 1, 0, . . . , 0), 1 ≤ i ≤ N , so R1234 can always be expressed through R123 = Jµ1, . . . , µN K as
R1234 = R

(−ei)
123 = Jµ1, . . . , µi−1, µi − 1, µi+1, . . . , µN K.

Analogously, setting R2345 = Jµ1, . . . , µN K, we can write R(−ei)
234 and R(−ei+ej)

23 . Note that the summation in
the pentagon is carried out over all i, j coming from fusion rules. It is easy to show that the number of possible
i and j is the same and we denote it by b ≤ N . For instance, in the previous subsection we had R23 = Ja, bk, cK
and i, j ∈ {1, k + 2} from fusion rules, so b = 2. The equality between the number of terms for ei and ej can
be derived similar to the Lemma 1 but with greater number of terms in the fusions. Moreover, analogously one
can show that there are b distinct R1234 that do not break fusion rules.

However, in the general situation 6-j symbol can have have b = N , so the relation from pentagon equation
will have up to N2 + 1 terms, they differ only by R(−ei+ej)

23 , with up to N(N − 1) + 1 distinct non-primitive 6-j
symbols. This relation is by no means three-term, so there is no corresponding orthogonal polynomial of one
variable. But it is reasonable to suppose that 6-j symbols are orthogonal polynomials in several variables. Let
us recall how the main statements are generalized for multiple variables [20].
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General properties of orthogonal polynomials in several variables. We use the standard multi-index
notation for monomials of d variables x = (x1, . . . , xd) and powers xα = xα1

1 . . . xαdd for d ≥ 1. The number
|α| =

∑
i αi is called the total degree. A polynomial P has the form

P (x) =
∑
α

cαx
α, cα ∈ C (73)

The main problem difference between orthogonal polynomials in one variable and orthogonal polynomials in
several variables is the ordering. Monomials of one variable can be easily ordered by their degree, deg(xα1) <

deg(xα
′
1) if α < α′. If we have several variables, the relation α < α′ can not be naturally defined. There is a

natural grading by the total degree, but inside the subspace of |α| = n there are several possible orderings, e.g.
lexicographical.

Due to this difficulty, it is convenient to consider homogeneous polynomials, in which each polynomial has
the same total degree. The space Π̃d

n of such polynomials is graded:

Π̃d
n = {P : P (x) =

∑
|α|=n

cαx
α}, rdn := dim Π̃d

n =

(
n+ d− 1

n

)
(74)

As arbitrary polynomial of total degree n can be expressed in terms of the homogeneous polynomials by setting
xd = 1. The space of arbitrary polynomials P dn in d variables with monomials of total degree n or lower is
denoted by Πd

n. We deduce that

Πd
n = {P : P (x) =

∑
|α|≤n

cαx
α}, dim Π =

(
n+ d

n

)
(75)

Definition 13. We define the orthogonality with respect to a bilinear form 〈•, •〉 on Πd. Given a polynomial
P , it is said to be orthogonal polynomial if for all orthogonal polynomials of lower total degree Q it satisfies

〈Pnα , Qmα′〉 = 0, ∀Q ∈ Πd, if m < n (76)

It is convenient to write a set of orthogonal polynomials of total degree n as a vector of, say, lexicographically
ordered polynomials

~Pn = (Pnα )|α|=n = (Pnα(1) , . . . , P
n

α(rdn) , )
T (77)

Theorem 2. ([20]) For n ≥ 0, 1 ≤ i ≤ d there exist unique matrices An,i : rdn × rdn+1, Bn,i : rdn × rdn and
Cn,i : rdn × rdn−1 such that

xi ~Pn = An,i
~Pn+1 + Bn,i

~Pn + Cn,i
~Pn−1, 1 ≤ i ≤ d (78)

where we define ~P−1 = 0 and C−1,i = 0.

For a given polynomial Pnα there are precisely d distinct three-term relations, each iterates on degree n and
produces monomial xi. In each relation the number of terms is up to 1+rdn−1+rdn+rdn+1, so in general orthogonal
polynomials may have a cumbersome generalized three-term recurrence relation.

The Favard’s theorem can also be generalized in the following way.

Theorem 3. Let {~Pn}∞n=0 = {Pnα : |α| = n, n ∈ N0}, ~P0 = 1, be an arbitrary sequence in Πd. Then the following
statements are equivalent.
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• There exists a linear functional L which defines a quasi-definite linear functional on Πd and which makes
{Pn}∞n=0 an orthogonal basis in Πd.

• For n ≥ 0, 1 ≤ i ≤ d, there exist matrices An,i,Bn,i,Cn,i such that

– the polynomials ~Pn satisfy the generalized three-term relation (78),

– the matrices in the relation satisfy the rank conditions:

rkAn,i = rkCn+1,i = rdn (79)

Three-term relation for 6-j symbols.

Proposition 6. 6-j symbols

{
J1 R2 R12

J3 R123 R23

}
satisfy a generalized three-term relation and form or-

thogonal polynomials.

The relation obtained from pentagon identity has the form:

∑
i

∑
j

(
DiDij

{
J1 R

(α−ei)
234 R

(ek)
1234

J1K R123 R
(α)
23

}{
R2 J34 R

(α−ei)
234

J1K R
(α)
23 J3

}
×

×

{
J1 R

(α−ei+ej)
23 R123

J1K R
(ek)
1234 R

(α−ei)
234

}{
R2 J3 R

(α−ei+ej)
23

J1K R
(α−ei)
234 J34

}
×

{
J1 R2 R12

J3 R123 R
(α−ei+ej)
23

})
= (80)

=

{
R12 J34 R

(ek)
1234

J1K R123 J3

}{
R12 J3 R123

J1K R
(ek)
1234 J34

}
×

{
J1 R2 R12

J3 R123 R
(α)
23

}

To interpret this relation as a generalized three-term one, we introduce variables:

xk :=

{
R12 J34 R

(ek)
1234

J1K R123 J3

}{
R12 J3 R123

J1K R
(ek)
1234 J34

}
(81)

From the discussion in the beginning of this subsection we have found that there are b nonequivalent recurrence
relations, enumerated by 1 ≤ k ≤ b. It can be seen that xk does not depend on R23 and R12, which we associate
with degrees and coordinates.

There are several ways to introduce the ordering in 6-j symbols by degree, we use the following one. For
R23 ∈ R2 ⊗ J3 we write a vector α = (α1, . . . , αb) encoding the number of boxes added to the Young diagram.
Obviously,

∑
i αi = |J3|. We set n = |J3| − α1, let us examine it. Indeed, if n = 0, then R23 is uniquely fixed.

If n = 1, there are b polynomials and so on.
We group the recurrence relation according to this ordering.

b∑
i=2

Aαi

{
J1 R2 R12

J3 R123 R
(α−e1+ei)
23

}
+

b∑
i=2

Cαi

{
J1 R2 R12

J3 R123 R
(α+e1−ei)
23

}
=

=

b∑
i=2

b∑
j=2

Bαij

{
J1 R2 R12

J3 R123 R
(α+ei−ej)
23

}
+ (Bα11 + xi)

{
J1 R2 R12

J3 R123 R
(α)
23

} (82)

Now the identification between generalized three-term relation and the relation above is obvious.
The statement above holds for arbitrary q. There is a result for q = 1 known for a long time [21], that 6-j

symbols indeed form an orthogonal polynomial. The three-term relation is obtained explicitly for the known
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expression of multiplicity-free 6-j symbol.
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3 Pentagon solution for types I+ and II+

In this section we consider 6-j symbols of types I+ and II+. They are multiplicity-free and iterable, so they
can be written as some orthogonal polynomials. We are interested in these 6-j symbols because the three-term
relation for them can be written explicitly. The corresponding polynomials are tightly connected with the Racah
polynomials and we can express a general 6-j symbol of types I+ and II+ in terms of some Racah polynomial.
This statement can be formulated more precisely in the following way.

Proposition 7. All 6-j symbols of type I+ and II+ can be written as some Saalschützian 4Φ3:[
r1 r2 i

r3 r4 j

]N
T

= KT · 4Φ3

(
a1, a2, a3, a4

b1, b2, b3
; q, q

)
, (83)

2ai =


−s1 − s2 + r12 − 2(N − 2)δT,2

−s3 − s123 + r12

−s1 − s123 + r23

−s2 − s3 + r23

 , 2bi =

 −s1 − s2 − s3 − s123 − 2(N − 1)

r12 + r23 − s2 − s123 + 2

r12 + r23 − s1 − s3 + 2 + 2(N − 2)δT,1

 . (84)

with some monomial coefficient KT that depends on type and representations.

The calculation of coefficients is possible due to the following result [8], which is discussed in detail in
Appendix A:

Proposition 8. Any multiplicity-free Racah matrix U of size 2 by 2 is of the form:

U =

(
−u11 u12

u12 u11

)

u11 =

√√√√ [κ12 − κ13 − κ23] [κ23 − κ12 − κ13]

[2κ12] [2κ23]
, u12 =

√√√√ [κ12 + κ23 − κ13] [κ12 + κ23 + κ13]

[2κ12] [2κ23]

(85)

where qκ12 , qκ23 , qκ13 are the eigenvalues of normalized matrices R12,R23,R13, κij ≥ 0, expressed in terms of
Casimir eigenvalues:

λi(R12) = qκQi−κR1
−κR2 for Qi ⊂ R1 ⊗R2, qκ12 :=

λ1√
λ1λ2

= q
1
2 (κQ1

−κQ2
) (86)

3.1 Orthogonal polynomials for type I+

In this subsection we derive the expression for type I+ 6-j symbol. The technique requires a lot of calculation,
so we split it into several parts:

1. Write a three-term relation on the 6-j symbol.

2. Express all coefficients as 2x2 Racah matrices.

3. Associate 6-j symbol and Racah polynomial.

Three-term relation. Type I+ 6-j symbols are iterable. The three-term relation can be constructed as in the
general case. An example of the R23 ⊗ J1K⊗ J1K decomposition for N = 4. Representations R23, R234, R2345 are
restricted to the form Ja, bN−2K by fusion rules.
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Example 4. Let us specify N = 4 and R23 = J4, 22K. The decomposition of R23 ⊗ ε− ⊗ ε+ is: ⊗

⊗ ⊃

 ⊕

⊗ ⊃ ⊕ 2 · ⊕ (87)

We specify R(i)
23 as follows. R(0)

23 = R2345 = J4, 22K, R2i
23 = J4 + 2i, (2 + i)2K for i ∈ {−1, 0, 1}. Representation

R
(i)
234 corresponds to J3 + i, (2 + δi,1)2K. Indices are representing the width of a Young diagram.

For a general case we denote:

R12 =

s
r12,

r12 + s2 − s1
2

N−2{
,

R
(2i)
23 =

s
r23 + 2i,

r23 + 2i+ s2 − s3
2

N−2{
, i ∈ {−1, 0, 1},

R
(i)
234 =

t

r23 + i,
r23 + 2δi,1 + s2 − s3

2

N−2
|

, i ∈ {+1,−1}.

(88)

The three-term relation for type I+ is:

∑
i=±1

∑
j=±1

(
D

(i)
234D

(2i)
23

{
S1 R

(i)
234 S1234

J1K R123 R2345

}{
S2 S34 R

(i)
234

J1K R
(0)
23 S3

}
×

×

{
S1 R

(i+j)
23 R123

J1K S1234 R
(i)
234

}{
S2 S3 R

(i+j)
23

J1K R
(i)
234 S34

}
×

[
s1 s2 r12

s3 s123 r23 + i+ j

]
1

)
=

=

{
R12 S34 S1234

J1K R123 S3

}{
R12 S3 R123

J1K S1234 S34

}
×

[
s1 s2 r12

s3 s123 r23

]
1

Or just

A(r23)

[
s1 s2 r12

s3 s123 r23 + 2

]
1

+B(r23)

[
s1 s2 r12

s3 s123 r23

]
1

+ C(r23)

[
s1 s2 r12

s3 s123 r23 − 2

]
1

=

= ν(r12)

[
s1 s2 r12

s3 s123 r23

]
1

(89)

The coefficients in the three-term relation are:

ν(r12) =

∣∣∣∣∣
{
R12 S3 R123

J1K S1234 S34

}∣∣∣∣∣
2

i = 1 A(r23)

i = −1 C(r23)

]
=D

(2n+i)
234 D

(2n+2i)
23

{
S1 R

(i)
234 R1234

J1K R123 R2345

}{
S2 S34 R

(i)
234

J1K R
(0)
23 S3

}
×

×

{
S1 R

(2i)
23 R123

J1K R1234 R
(i)
234

}{
S2 S3 R

(2i)
23

J1K R
(i)
234 S34

}

B(r23) =
∑
i

Bi(r23) =
∑
i

D
(2n+i)
234 D

(2n)
23

∣∣∣∣∣
{
S1 R

(i)
234 R1234

J1K R123 R
(0)
23

}{
S2 S34 R

(i)
234

J1K R
(0)
23 S3

}∣∣∣∣∣
2

(90)

Primitive 6-j symbols calculation. The primitive 6-j symbols above are elements of 2x2 Racah matrices.
The matrices of this kind was found explicitly from the cabling procedure [8], we process this result in the
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Appendix A. The obtained 6-j symbols are as follows.
The ν(r12) term:

ν(r12) =

∣∣∣∣∣
{
R12 Js34K R1234

J1K R123 Js3K

}∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
2κ12 = s123 +N − 1

2κ23 = s3

2κ13 = r12 +N − 1

∣∣∣∣∣∣∣
−

+

=
[ s3−r12+s1232 ][ r12+s123+s3+2N−2

2 ]

[s123 +N − 1][s3]D1234D3
(91)

The 6-j symbols forming A(r23), B(r23), C(r23) terms:

∣∣∣∣∣
{

Js1K R
(i)
234 R1234

J1K R123 R
(i+j)
23

}∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
2κ12 = s123 +N − 1

2κ23 = r23 +N − 1 + i

2κ13 = s1 + 1

∣∣∣∣∣∣∣
−

j

=
[ r23+N−1+i−j(s1−s123−N+2)

2
][ j(s1+s123+N)+r23+N−1+i

2
]

[s123 +N − 1][r23 +N − 1 + i]D1234D
(i+j)
23

(92)∣∣∣∣∣
{

Js2K Js3K R
(i+j)
23

J1K R
(i)
234 Js34K

}∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
2κ12 = r23 +N − 1 + i

2κ23 = s3 +N − 1

2κ13 = s2 + 1

∣∣∣∣∣∣∣
j

−

=
[ j(s3+N−1)−s2+r23+N−2+i

2
][ s2+r23+N+i+j(s3+N−1)

2
]

[r23 +N − 1 + i][s3 +N − 1]D34D
(i+j)
23

(93)

The coefficients A(r23), B(r23), C(r23), ν(r12) can be simultaneously multiplied by the r23-independent factor
without change of the solution. The normalization factor [s123 +N − 1][s3]D1234D3 is chosen to simplify ν(r12).
The coefficients in the type I+ three-term relation (89) are then:

ν(r12) =

[
s3 + s123 − r12

2

] [
−s3 + s123 + r12

2
−N + 1

]
(94)

B1(r23) = −
[
s1−s123+2+r23

2

] [−s123−s1+r23
2

] [−s3−s2+r23
2

] [
r23−s3+s2−2+2N

2

]
[r23 +N ] [r23 +N − 1]

−

B2(r23) = −
[−s1+s123+2N−4+r23

2

] [
s123+s1+2N+r23−2

2

] [
s2+r23+2N−2+s3

2

] [
r23−s2+s3

2

]
[r23 +N − 2] [r23 +N − 1]

(95)

A(r23) =

√[
2N−s1+s123−2+r23

2

] [
s123+s1+2N+r23

2

] [
2N−2−s2+r23+s3

2

] [
s2+r23+2N+s3

2

] [
s1−s123+2+r23

2

]
[r23 +N ] [r23 +N − 1]

×

×

√[−s123−s1+r23
2

] [−s3−s2+r23
2

] [
r23−s3+s2−2+2N

2

][
r23−s3+s2+2

2

]
C(r23) =

√[
s1−s123+r23

2

] [−s123−s1+r23−2
2

] [−s3−2−s2+r23
2

] [
r23−s3+s2

2

] [−s1+s123+2N−4+r23
2

]
[r23 +N − 2] [r23 +N − 1]

×

×

√[
s123+s1+2N+r23−2

2

] [
s2+r23+2N−2+s3

2

] [
r23−s2+s3

2

][
s3−s2+r23+2N−4

2

]

(96)

Racah polynomial. The Racah polynomials and some other polynomials are identical if and only if they have
the same three-term relation and the polynomials are monic. That is, the coefficients An, Bn, Cn, ν(x) have the
same expressions and the polynomial’s base value y0(x) = 1. If the latter condition is not fulfilled, then the
polynomials will differ by a common factor yn(x) = Rn(x) · y0(x), as it can be seen from the three-term relation
itself. We have a problem with the constructive derivation of this factor, so we apply the following trick. Both
of this polynomials by Favard’s theorem possess a unique orthogonality relation. For both Racah polynomials
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and 6-j symbols we know the form of this relation including the exact expression for the measure. As far as the
three-term relation coincide for both polynomials, we can extract the factor y0(x) by equating the measures of
orthogonality relations.

We can choose a special normalization that makes our three-term relation and Racah polynomial’s three-term
relation identical. This normalization is made by the following polynomial redefinition:

Pr23(r12) =

[
s1 s2 r12

s3 s123 r23

]
1

·K3TR(r23) (97)

The three-term equation is homogeneous, so we can multiply all terms by a common factor and the coefficients
B(r23), ν(r12) for Pr23(r12) are the same as for 6-j symbol. Only A(r23) and C(r23) are changed. We choose the
The monomial factor is uniquely determined by the property that new coefficient C(r23) is equal to −B2(r23).

K3TR(r23) =

√ [
s1−s123+r23

2

]
!
[
r23−s3+s2

2

]
![−s1+s123+2N−4+r23

2

]
!
[
s123+s1+2N+r23−2

2

]
!
× (98)

×
√

1[
s3−s2+r23+2N−4

2

]
!
[
s2+r23+2N−2+s3

2

]
!
[
s123+s1−r23

2

]
!
[
s3+s2−r23

2

]
!

The fact that A(r23) transforms into −B1(r23) tells us that the polynomial has Racah polynomial properties.
The new polynomial has the following three-term relation:

A(r23)Pr23(r12)− (A(r23) + C(r23))Pr23(r12) + C(r23)Pr23(r12) = ν(r12)Pr23(r12) (99)

The variable ν(r12) = −
[
s3+s123−r12

2

] [
s3+s123+r12

2 +N − 1
]
encapsulates R12 dependence. The three-term rela-

tion coefficients An, Cn satisfy the simple relation Bn +An + Cn = 0:

An =

[
s1−s123+2+r23

2

] [−s123−s1+r23
2

] [−s3−s2+r23
2

] [
r23−s3+s2−2+2N

2

]
[r23 +N ] [r23 +N − 1]

−

Cn =

[−s1+s123+2N−4+r23
2

] [
s123+s1+2N+r23−2

2

] [
s2+r23+2N−2+s3

2

] [
r23−s2+s3

2

]
[r23 +N − 2] [r23 +N − 1]

(100)

These coefficients are of the same form as Racah polynomial coefficients (49). The identification is given by:

a = −s3 − 1

b = −s2 + 1−N

d = s1−s123−s3+s2
2

g = − s123+s1+s3+s22 −N

n = s3+s2−r23
2

x = s3+s123−r12
2

(101)

Thus, the polynomial Pr23(r12) is proportional to Racah polynomial:

R23 =
q
s2 + s3 − 2n, (s2 − n)N−2

y
2n = s2 + s3 − r23,

R12 =
q
s1 + s2 − 2x, (s2 − x)N−2

y
2x = s1 + s2 − r12

(102)

Rn(ν(x)) = K(x) · Ps2+s3−2n(s3 + s123 − 2x) (103)
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We can express the 6-j symbol up to a monomial factor Kort = K(x) ·K3TR(n) as:

[
s1 s2 r12

s3 s123 r23

]
1

·Kort = 4F3

(
−s2−s3+r23

2 , −s2−s3−r232 −N + 1, −s3−s123+r122 , −s3−s123−r122 −N + 1

−s3,− s2+s3+s123−s12 −N + 2,− s1+s2+s3+s1232 −N + 1
; q, q

)
(104)

The monomial factor K(x) depends on r12 and s1, s2, s3, s123, but invariant on r23. The expression of K(x) is
not unity because two polynomials above have different orthogonality measure, although they have the same
three-term relation. It does not contradict with the Favard’s theorem because we do not require Pr23(r12) to be
equal one for n = 0. This is hard to do explicitly because we do not know the value of polynomial at n = 0 and
we can not obtain the normalization.

On the other hand, we can use the orthogonality relations of both Racah and 6-j symbols and use the Favard’s
theorem to associate the measures. On the one hand, for non-trivial 6-j symbols:

∑
r12

[
s1 s2 r12

s3 s123 r23

]
1

[
s1 s2 r12

s3 s123 r23

]
1

D12D23 = 1 (105)

On the other hand, if we write it as Racah polynomial, there is such Kort that∑
x

Rn(ν(x))Rn(ν(x)) · D12D23

K2
ort(x, n)

= 1 (106)

is the orthogonality of Racah polynomial with the canonical measure (50). It provides us with the proportionality
coefficient between 6-j symbol and Racah polynomial. This coefficient Kort is monomial, but cumbersome, it is
better to obtain it as the identification between equations (50) and (106).

The known empiric formula [1, 6] is[
s1 s2 r12

s3 s4 r23

]
1

= K · 4Φ3

(
a1, a2, a3, a4

b1, b2, b3
; q, q

)
, (107)

2ai =


−s1 − s2 + r12

−s3 − s4 + r12

−s1 − s4 + r23

−s2 − s3 + r23

 , 2bi =

−s1 − s2 − s3 − s4 − 2(N − 1)

r12 + r23 − s2 − s4 + 2

r12 + r23 − s1 − s3 + 2(N − 1)

 . (108)

It can be transformed into the same hypergeometric function via Sears’ transformation (35):

4Φ3

(
x, y, z, n

u, v, w
; q, q

)
=

[v−z−n−1]q![u−z−n−1]q![v−1]q![u−1]q!

[v−z−1]q![v−n−1]q![u−z−1]q![u−n−1]q!
4Φ3

(
w − x,w − y, z, n

1−u+z+n, 1−v+z+n,w
; q, q

)
, (109)

The arguments then become:

2ai =


−s1 − s2 + r12

−s1 − s2 − r12 − 2N − 2

−s1 − s4 + r23

−s1 − s4 − r23 − 2N + 2

 , 2bi =

−s1 − s2 − s3 − s4 − 2(N − 1)

−2s1

−2s1 − 2(N − 2)

 . (110)

Which is exactly what we need.
The question about phases in tetrahedral symmetries and the three-term relation can be solved as follows.
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The sign can always be chosen in such a way that cyclic permutations do not change the sign, according to
Butler [15]. It ensures that we know the signs correctly.

3.2 Orthogonal polynomials for type II+

The ν(r12) term:

ν(r12) =

∣∣∣∣∣
{
R12 Js34K R1234

J1K R123 Js3K

}∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
2κ12 = s123 +N − 1

2κ23 = s3 +N

2κ13 = r12 + 1

∣∣∣∣∣∣∣
−

−

=
[ s3+r12−s123+2

2 ][ r12+s123−s32 ]

[s123 +N − 1][s3 +N ]D1234D3
(111)

The 6-j symbols forming A(r23), B(r23), C(r23) terms:

∣∣∣∣∣
{

Js1K R
(i)
234 R1234

J1K R123 R
(i+j)
23

}∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
2κ12 = s123 +N − 1

2κ23 = r23 +N − 1 + i

2κ13 = s1 + 1

∣∣∣∣∣∣∣
−

j

=
[ r23+N−1+i−j(s1−s123−N+2)

2
][ j(s1+s123+N)+r23+N−1+i

2
]

[s123 +N − 1][r23 +N − 1 + i]D1234D
(i+j)
23

(112)∣∣∣∣∣
{

Js2K Js3K R
(i+j)
23

J1K R
(i)
234 Js34K

}∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
2κ12 = r23 +N − 1 + i

2κ23 = s3 + 1

2κ13 = s2 +N − 1

∣∣∣∣∣∣∣
j

+

=
[−j(s3+1)−s2+r23+i

2
][ s2+r23+2N−2+i−j(s3+1)

2
]

[r23 +N − 1 + i][s3 + 1]D34D
(i+j)
23

(113)

Three-term relation has coefficients:

ν(r12) =

[
s3 + r12 − s123 + 2

2

] [
r12 + s123 − s3

2

]
(114)

A(r23) =

[
s1−s123+2+r23

2

] [−s123−s1+r23
2

] [
s3+2N+s2+r23

2

] [
r23−s2+s3−2+2N

2

]
[r23 +N − 1] [r23 +N ]

C(r23) =

[−s1+s123+2N−4+r23
2

] [
s123+s1+2N+r23−2

2

] [−s3−2−s2+r23
2

] [
r23−s3+s2

2

]
[r23 +N − 2] [r23 +N − 1]

(115)

It is Racah polynomial with parameters:

α = −s123 + 1−N

β = −s1 − 1

δ = s1−s123−s2+s3
2

γ = s3+s2−s1−s123
2

n = s123+s1−r23
2

x = r12+s123−s3
2

(116)

The 4Φ3 function is of the form:

4Φ3

(
−s123−s1+r23

2 , −s123−s1−r232 −N + 1, −r12−s123+s32 , r12−s123+s32 + 1

−s123 −N + 2, −s2+s3−s1−s1232 , s3+s2−s1−s1232 + 1
; q, q

)
(117)
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It can be transformed via two Sears’ transformations to

4Φ3

(
−s123−s1+r23

2 , −s123−s1−r232 + 1−N, r12−s2−s12 , −r12−s2−s12 − 1

−s1, −s2+s3−s1−s1232 , −s3−s2−s1−s1232 −N + 1
; q, q

)
(118)

and then to

4Φ3

(
−s123−s1+r23

2 , −s3−s2+r232 , r12−s2−s12 , r12−s123−s3+2−N
2

r23−s2−s123+r12
2 + 1, 1 + −s3−s1+r23+r12

2 , −s3−s2−s1−s1232 −N + 1
; q, q

)
(119)

As is can be seen from the arguments, the hypergeometric function coincide with one written in the Proposition
7, this completes the proof.
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A Racah matrices from back-coupling rule

A.1 Back-coupling rule solution

In this section we find a general formula for Racah matrix of dimension 2. In this section for simplicity we
assume that q ∈ R, which correspond to ?-representations [3, 22]. In particular it allows to make Racah matrices
orthogonal, as the algebra becomes real-valued. The approach is similar to [8], but we enrich it with the proof
of a solution uniqueness. The statement is that the Racah back-coupling rule determines Racah matrix if the
dimension equals 2.

Let us briefly recall the different forms of the Racah back-coupling rule (17). It was shown in the introduction
that the Racah back-coupling rule follows from the R-matrix definition, namely hexagon axioms (10). It can be
compactly written in terms of Racah matrices as in (20). Restricting matrices only to the subspace where they
act non-trivially, the equation then becomes:

R̃1,2U312R̃1,3U231R̃2,3U123 = I · σqκ4−κ1−κ2−κ3 (120)

This equation simplifies a lot if we normalize each R-matrix and consider matrices of dimension two.

R̃i,j =

(
λij 0

0 − 1
λij

)
, U123 = (uij), U231 = (vij), U312 = (wij) (121)

The phases convention we use restrict us that |R| = −1. Note that λij can be either positive or negative, but
the matrix always has |R| = 1. The Racah back-coupling rule reduces to:(

λ12 0

0 − 1
λ12

)(
u11 u12

u21 u22

)(
λ13 0

0 − 1
λ13

)(
v11 v12

v21 v22

)(
λ23 0

0 − 1
λ23

)(
w11 w12

w21 w22

)
=

(
1 0

0 1

)
(122)

This equation can be solved directly with respect to Racah matrices entries. We consider two important
cases. The first one is when the representations on which act R-matrices are equal. This case is known as the
knot case. The second one is a general situation when we consider (122) in a full generality. It is called the link
case.

Knot case. It implies that R̃ = R̃12 = R̃23 = R̃13 and U = U123 = U231 = U312. So, the equation becomes:

(R̃U)3 = I (123)

Note that from the determinant sign we obtain |U |3 = −1, so we can write U as unitary matrix with negative
determinant.

U =

(
c s

s −c

)
, c2 + s2 = 1 (124)

Proposition 9. The general solutions of the knot back-coupling rule (123) is either of the form

U =

 −ξ
ξ2+1 ±

√
ξ2+ξ4+1

ξ2+1

±
√
ξ2+ξ4+1

ξ2+1
ξ

ξ2+1

 , R =

(
λ 0

0 − 1
λ

)
(125)
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or when λ = ±1 it also can be

U = ±

(
1 0

0 −1

)
= R (126)

Proof. There are three linearly independent equations:


s
λ3

(
c2(λ2 + 1)2 − λ2

)
= 0

1
λ

(
c2λ2 + c2 − cλ− 1

) (
c(λ2 + 1) + λ

)
= 0

1
λ3

(
c2λ2 + c2 − cλ− λ2

) (
c(λ2 + 1) + λ

)
= 0

⇒



c = − λ
(λ2+1) , λ ∈ R

s = ±
√

1− c2s = 0,

c = λ = ±1

(127)

The system can be manually solved in terms of c, there are two solutions, each with some sign ambiguities. They
are written on the right.

The first solution is general and can be applied for any λ. The second solution is degenerate and can occur
only when λ = ±1.

The signs are not fixed from the equations. This is not an issue because different signs in the solution
correspond to a particular choice of basis and can be determined only by convention.

We can show that the second solution is absent if we restrict to the multiplicity-free case. We prove this fact
in the more general link case.

Link case. For brevity we denote by indices a, b, c any cyclic permutation of indices 1, 2, 3. Parameters ca and
sa are elements of the matrix Ucab.

Proposition 10. General solution of 2x2 Racah back-coupling equation (122) has 6 groups of solutions:

1. λabλbcλca = ±1 ⇒ c2a = c2b = c2c = 1

2. λabλbcλ−1ca = ±1 ⇒ s2a = s2b = c2c = 1

3. λ2bc = 1, λabλca = ±1 ⇒ c2a = 1, s2b = s2c

4. λ2bc = 1, λabλ
−1
ca = ±1 ⇒ c2a = 1, s2b = c2c

5. λ212 = λ223 = λ213 = 1

6. Nontrivial solution:

c = −

√
(λ212 − λ213λ223)(λ223 − λ212λ213)

λ213(1− λ412)(1− λ423)
, s =

√
(λ213 − λ212λ223)(1− λ212λ213λ223)

λ213(1− λ412)(1− λ423)
(128)

Proof. The equations can be solved with the help of computer algebra.

A.2 Solution uniqueness

Our claim is that although there are a lot of degenerate solutions (the first five groups), all these degeneracies
disappear for multiplicity-free Racah matrices. The key point is that Casimir eigenvalues of corresponding
representations satisfy two properties. The first one is that R-matrix eigenvalues satisfy inequality λab 6= ±1.
The second one is a triangle inequality on Casimir eigenvalues imposed by |λabλbcλ±ca| 6= ±1.
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Conjecture 2. Multiplicity-free 2-dimensional Racah matrix from Uq(slN ) with q 6= 1 always has only a non-
trivial solution of Racah back-coupling rule.

We do not prove this statement in the paper, but a lot of examples give us a hint that it can be true. In
this paper we need the more concrete version of this statement and prove it. Namely, we just show that 6-j
symbols that arise as coefficients in the three-term recurrence relations satisfy only nontrivial solution of the
Racah back-coupling rule.

Lemma 3. R-matrices acting on the pairs of representations from R1 ⊗R2 ⊗ J1K has distinct eigenvalues.

Proof. Let us consider R23 first. From here we assume that q 6= 1 and the product of representations is
multiplicity-free. The R-matrices then have eigenvalues:

λab = q
1
2 (κQ1

−κQ2
) := qκab for Qi ⊂ Ra ⊗Rb, Q ⊂ Qi ⊗Rc, κµ =

∑
(i,j)∈µ

(i− j) (129)

Here κ are the second Casimir eigenvalues. It acts on the space R2⊗ [1], which can be decomposed on irreducible
representations in a multiplicity-free way. Two eigenvalues correspond to diagrams, say, µ1 and µ2. These
diagrams are almost the same partitions: they differ by the displacement of the only element. From multiplicity-
free condition we can state that the displacement is non-zero. Thus, the sum in κ23 reduces to the only non-zero
term:

2κ23 =
∑

(i,j)∈µ1

(i− j)−
∑

(i,j)∈µ2

(i− j) = (i1 − i2 − j1 + j2) ≥ 2 (130)

The Young diagrams µ1 and µ2 are lexicographically ordered, so i1 > i2 and j1 > j2. Thus, the eigenvalues of
R23 are not ±1.

The eigenvalues of R12 are obtained in the following way. Let us again denote the Young diagrams corre-
sponding to eigenvalues by µ1 and µ2. Then we can connect them because µ1 ⊗ J1K ⊃ Q ⊂ µ2 ⊗ J1K. It means
that both µ1 and µ2 differ from Q by one element and hence κ12 reduces to a single term and again it is always
positive:

κ12 =
1

2
(i1 − i2 − j1 + j2) ≥ 1 (131)

The derivation for R13 is identical.

This lemma shows that the solutions from groups 3, 4, 5 are absent for considered representations. To handle
the first two groups we need the following lemma.

Lemma 4. For the 2-dimensional Racah matrix of the form:

U

(
Ja, bN−2K JsK

J1K Jc, dN−2K

)
(132)

the solution is unique and non-trivial. In particular, there is no degeneracy ±∆κ12 ±∆κ23 ±∆κ13 = 0.

Proof. This matrix is of dimension at most 2, it can be deduced from fusion rules. The corresponding set of
three R-matrices has the same dimension. It is possible to write explicitly the representations on which each
matrix acts.
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The representations Q(12)
i for R12 are found from Ja, bN−2K⊗JsK ⊃ Q(12)

i ⊂ Jc, dN−2K⊗J1K. Using Littlewood-
Richardson rules we derive the diagrams and obtain the eigenvalues:

Q
(12)
1 = Jc+ 1, (d+ 1)N−2K, Q

(12)
2 = Jc, (d+ 1)N−2, 1K, λ12 = q

1
2 (c+N−1) (133)

The same procedure can be done for R23 and R13:

Q
(23)
1 = Js+ 1K, Q

(23)
2 = Js, 1K, λ23 = q

1
2 (s+1)

Q
(13)
1 = Ja+ 1, bN−2K, Q

(13)
2 = Ja, bN−2, 1K, λ13 = q

1
2 (a+N−1)

(134)

We can see that each eigenvalue is non-degenerate in a sense that κab 6= 0. To go further we need to note that
the Racah matrix is non-trivial only if additional fusion rules are imposed on c. For a fixed a, b, s we can obtain
that Jc, dN−2K is of the form:

Ja, bN−2K⊗ JsK⊗ J1K =

min(s+1,b)⊕
i=0

Ja+ s+ 1− i, bN−2, iK (135)

From this decomposition we obtain that max(0, a− s− 1) ≤ c ≤ a + s + 1. As κab > 0, we need to check only
thee cases of ±κ12 ± κ23 ± κ13 6= 0:

−κ12 + κ23 + κ13 = a+ s+ 1− (a+ s+ 1− 2i) = 2i ≥ 0

κ12 − κ23 + κ13 = a− s− 1 + 2(N − 1) + a+ s+ 1− 2i = 2(N − 1) + 2a− 2i ≥ 2(N − 1 + a− b) ≥ 1

κ12 + κ23 − κ13 = s+ 1− a+ (a+ s+ 1− 2i) = 2(s+ 1 + i) ≥ 0

(136)

The equality ±κ12 ± κ23 ± κ13 = 0 is satisfied only for maximal and minimal i, but these values make Racah
matrix one-dimensional. Hence, for two-dimensional Racah matrix of considered type there are no degeneracy
and the solution is unique and non-trivial. As the product of diagrams is commutative and associative, the same
result is true for arbitrary permutation of the arguments Ja, bN−2K, JsK, J1K in Racah matrix.

Lemma 5. For the following 2-dimensional Racah matrix the solution is unique and non-trivial:

U

(
Ja, bK JsK
J1K Jc, dN−2K

)
(137)

Proof. The proof is analogous to the previous lemma.

A.3 Two-dimensional Racah matrices

Let us consider the the non-trivial solution of (122) and write it in a form appropriate for our computations.
The Racah matrix is:

U123 =


−

√
(λ212 − λ213λ223)(λ223 − λ212λ213)

λ213(1− λ412)(1− λ423)

√
(λ213 − λ212λ223)(1− λ212λ213λ223)

λ213(1− λ412)(1− λ423)√
(λ213 − λ212λ223)(1− λ212λ213λ223)

λ213(1− λ412)(1− λ423)

√
(λ212 − λ213λ223)(λ223 − λ212λ213)

λ213(1− λ412)(1− λ423)

 (138)

where λ are normalized R-matrix eigenvalues and they are chosen to be always greater or equal to one.

λi = qκQi−κR1
−κR2 for Qi ⊂ R1 ⊗R2, Q ⊂ Qi ⊗R1, λ = q

1
2 (κQ1

−κQ2
) = qκ12 (139)
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The matrix entries can be written as a q-numbers:

λ212 − λ213λ223 = λ12λ13λ23

(
λ12

λ13λ23
− λ13λ23

λ12

)
= λ12λ13λ23

(
q − 1

q

)
[κ12 − κ13 − κ23] (140)

So the matrix becomes:

U123 =


−

√
[κ12 − κ13 − κ23] [κ23 − κ12 − κ13]

[2κ12] [2κ23]

√
[κ12 + κ23 − κ13] [κ12 + κ23 + κ13]

[2κ12] [2κ23]√
[κ12 + κ23 − κ13] [κ12 + κ23 + κ13]

[2κ12] [2κ23]

√
[κ12 − κ13 − κ23] [κ23 − κ12 − κ13]

[2κ12] [2κ23]

 (141)

Example 5. Let us compute the symbol:{
Ja, bN−2K Js2K Js123 − 1K

J1K Js123K Js2 + 1K

}
(142)

The first we need to do is to obtain Young diagrams corresponding to R12,R23 and R13:

Js123K⊗ J1K = Js123 + 1, 1N−2K⊕ Js123, 1N−1K

Js2K⊗ J1K = Js2 + 1K⊕ Js2, 1K

Ja, bN−2K⊗ J1K = Ja+ 1, bN−2K⊕ Ja, bN−2, 1K

2κ12 = s123 +N − 1,

2κ23 = s2 + 1,

2κ13 = a+N − 1

(143)

We recall that the basis in for Racah matrix is constructed from lexicographically ordered Young matrices. Thus,
we obtain the following value:∣∣∣∣∣

{
Ja, bN−2K Js2K Js123 − 1K

J1K Js123K Js2 + 1K

}∣∣∣∣∣
2

=
[ s2+s123−a2 ][a+s123+s2−12 +N ]

dim(Js123 − 1K) dim(Js2 + 1K)[s123 +N − 1][s2 + 1]
(144)

We finish this example with the simplifying result:

For Racah matrices computation we use the following simple expression:

|Uk|2 =
[κ23 + k(κ13 − κ12)][κ12 + κ13 − k(κ23)]

[2κ12][2κ23]
k :

(
+ −
− +

)
(145)

The sign k is chosen for (1, 1) and (2, 2) elements of matrix as +1 and −1 for the other two.
The eigenvalues are calculated above and there are basically three cases:

2κ12 = s R1 ⊗R2 = [s− 1, 1]⊕ [s] (146)

2κ12 = s+N R1 ⊗R2 = [s− 1, 1N−2]⊕ [s] (147)

2κ12 = r +N R1 ⊗R2 = [r, cN−2]⊕ [r + 2, (c+ 1)n−2] (148)
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