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1 Introduction
This work is devoted to the properties of quantum field theory on the strong background
gravitational fields. The first reason why these phenomena deserve consideration is as
follows: recent cosmological observations suggest the existence of a positive cosmological
constant Λ, which, however, is quite small to significantly affect local (on scales smaller
than the galaxy clusters sizes) processes. However, in the early universe, the situation
probably was different and the rate of expansion was much faster. In the latter case
gravitational fields may dramatically change the properties of quantum fields as compared
to those in flat space. In fact, there is still no consensus about the consequences of
the peculiarities of infrared behavior of quantum fields in the de Sitter space on the
one hand [1–6], on the other hand [7–11]. Moreover, even in a flat space (Rµναβ = 0),
there are nontrivial quantum effects: for example, the Unruh one (also known as the
Fulling–Davies–Unruh effect)[12–14].

As background gravitational fields we consider two space-times. The first, and the
most interesting for us, because it is a model describing the expanding Universe, is the
static de Sitter patch discovered by W. de Sitter in 1917 [15]. Although cosmologists
usually use the spatially flat Poincaré coordinates [16–18] (see also [17–19])., we will focus
on static coordinates because they admit time-like killing vector, which however is not
globally defined. On the horizon it becomes light-like. As will be shown below, near
the horizon, the metric of the static patch is approximately equals to that of the Rindler
space.1 For this reason, the second metric that we consider is that of the Rindler space.
And we want to see in details the similarities and differences of these two cases.

As it is mentioned before, both spaces under consideration have horizons – light-like
surfaces. There are well-known classic works about quantum field theory in spaces with
horizons. For example, the previously mentioned [12–14]. Also the relation between the
existence of a bifurcate Killing horizon and some special equilibrium thermal state [20], or
close relation between event horizons and thermodynamics [21]. In all, there is so-called
canonical temperature βC associated with the properties of geometry at the horizon.

When studying fields on the background spaces with horizons, historically, most at-
tention was paid to either thermal states with canonical temperature or vacuum states [14,
22, 23]. However, there are other time translation invariant states. The main purpose of
this work is to study the properties of the thermal states of a scalar field with the arbi-
trary temperature β, and we are especially interested in β different from the canonical
one. The question we would like to address is whether or not one can place a gas of exact
modes with arbitrary temperature in de Sitter space of high curvature.

Technical part of the work is as follows: we consider static solution of Einstein’s
equations in empty space (space with a cosmological constant will also be called empty),
and consider the quantum field on the background of this gravitational field. Note that
we are neglecting backreaction. As quantum field we consider massive real scalar field
minimally coupled with gravity. Also we consider only free fields without self-interaction.

We construct propagators for thermal states with various β, and study their properties.
Particular attention paid to the propagators and stress-energy tensors near the horizons.
It is shown that there is a dramatic difference between the two cases β = βC and β 6= βC .
Moreover, for β = βC the propagators depend on the geodesic distance between two
points, while states with other temperatures break the symmetry of the space.

This work is based on articles [24, 25], also similar problems are discussed [26].
We want to emphasize that we will consider the de Sitter space with small radius ,

1However, one should not forget that in the Rindler space Riemann tensor is zero, while in the de
Sitter space, on the contrary, the curvature is constant and non-zero at every point including the horizon.
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or in other words with large Hubble constant. Otherwise, there is no reason to consider
exact modes. In de Sitter space of large radius one should consider point-like particles.
Similarly, in Rindler space, we will consider the large proper acceleration. Also it may be
worth to stress here that only the two-dimensional case is considered to avoid technical
difficulties that arise in higher dimensions. However there are reasons to assume that con-
clusions drawn from calculations in two dimensions are the same as in higher dimensions,
because some calculations were done in an arbitrary dimension and the obtained results
are essentially the same.

2 Quantum fields in the de Sitter space

2.1 Geometry of the de Sitter space

One can visualise the two-dimensional de Sitter space as the one-sheeted hyperboloid
embedded in a three dimensional ambient Minkowski space (see Fig. 1):

dS2 = {X ∈ R3, XαXα = X2
0 −X2

1 −X2
2 = −R2}. (2.1)

(capital Xα denote the coordinates of a given Lorentzian frame of the ambient spacetime).

Figure 1: The de Sitter space with unit radius embedded in the three dimensional ambient
Minkowski space.

The de Sitter space is the maximally symmetric solution of Einstein gravitational field
equations with constant curvature, the two dimensional de Sitter space with radius R has
the following curvature:

gµνRµν = − 2

R2
,

and the isometry group of the de Sitter space is the Lorentz group of (2 + 1) dimension
ambient space O(2, 1). However, when dealing with the de Sitter space, one usually
considers a specific coordinate system that covers (not necessarily entire) hyperboloid.
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The most popular choice of coordinates are those due to Poincaré, without going into
details, the metric in this case is as follows:

ds2 = dt2 − e
2t
R dx2.

The latter coincides with the metric of a spatially homogeneous expanding universe but
there is no globally defined time-like Killing vector. This metric covers half of the entire
de Sitter space – expanding Poincaré patch at Fig. 2. However, we will mostly use static
coordinates of the de Sitter space, which are defined as follows:

X

(
t

R
,
x

R

)
=


X0 = R sinh t

R
sech x

R

X1 = R tanh x
R

= u

X2 = R cosh t
R

sech x
R

, t ∈ (−∞,∞), x ∈ (−∞,∞). (2.2)

Here and below we setR = 1 and tanhx ≡ u. The static coordinate system was introduced
as early as 1917 by Willem de Sitter in the course of the famous debate on the relativity
of inertia [27]. Of course, it is natural to expect that physical observables do not depend
on the choice of the coordinate system. But, in fact, a calculation of some quantities in
quantum field theory means to calculate the average of the corresponding operator for a
particular state. But the sets of modes of the field in different patches (if, for example,
comparing the Poincaré region and the static patch) are not equivalent. Therefore, Fock
spaces, generally speaking, do not have to coincide. In other words as one can see from
the Fig. 2 one cannot define one universal Cauchy surface for all coordinate systems.
However, as will shown later, there are states upon consideration of which it turns out
that tree-level propagators can be analytically continued from one region to another.

Static patch

ho
riz
on

horizon

ho
riz
on

horizon

OBS-1

OBS-2

EPP EPP

A

B

C

Figure 2: Penrose diagram for the de Sitter space. The blue shaded part – the static
patch(SP), the part with red dots – expanding Poincaré patch(EPP). A line is the Cauchy
surface for the field in EPP, B line is the Cauchy surface for the field in SP, C line is
the Cauchy surface for the field in the global de Sitter space. Note that if we consider
the Cauchy surface in the SP as the Cauchy surface in the EPP, then there are the zones
where it becomes light-like – thick red lines. OBS-1 is the observer inside the static patch,
while OBS-2 is the observer outside the static patch. Dashed black lines represent the
boundary of the causal past for the observers.
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The static coordinates cover only the quarter {|X1| < 1} ∩ {X2 > |X0|} of the entire
de Sitter manifold (blue shaded region in Fig. 2). The static wedge is itself a globally
hyperbolic space–time but a Cauchy surface for the wedge is incomplete in relation to the
whole de Sitter manifold, being only "one half" of a bona fide Cauchy surface2. As one
can see from Fig. 2: the Cauchy surface in the static patch does not describe the causal
past for the observer-2 at all. On the other hand quantization in the static coordinates
has an advantage in comparison with other coordinate systems. From a group theoretical
viewpoint the new time coordinate t parametrizes the one-parameter subgroup of the de
Sitter group. And as it will be shown later the Hamiltonian operator is time independent.
Direct calculation of the induced metric in the static patch gives the following expression:

ds2 =
dt2 − dx2

coshx2
, (2.3)

it is time independent and conformal to the flat metric. The static patch is bordered by
a bifurcate Killing horizon

x→ ±∞, t = ±x + finite constant,

where the metric degenerates. The corresponding Killing vector ∂t is not time-like when
extended outside the static patch. As for the de Sitter invariant combinations of coordi-
nates, the de Sitter invariant scalar product is given by:

Z = Z12 = Xα
1 X2α = −cosh(t1 − t2) + sinh x1 sinhx2

coshx1 coshx2

. (2.4)

Note that (2.4) has the following symmetry:

Z(t2 − t1 + 2πi) = Z(t2 − t1). (2.5)

The geodesic distance L and hyperbolic distance Z are related as follows: Z = − cosh(L)
for time-like geodesics, Z = cos(L) for space-like ones, Z = −1 for light-like separations
or coincident points. Also note that Z = 1 for the antipodal points.

2.2 Canonical Quantization

In this section we outline the canonical quantization of the minimally coupled massive
scalar field in the static chart. In this work we consider fields withm2 > 1/4, the reason for
this bound will be seen below. We apply standard methods of canonical quantization and
look for a complete set of modes by separating the variables, but of course the constructed
set of modes will be incomplete when considered w.r.t. the whole de Sitter manifold [29,
30]. Using (2.3) one can find Klein-Gordon equations:(

∂2
t − ∂2

x +
m2

cosh2 x

)
φ(t, x) = 0. (2.6)

Let us consider factorized modes which have positive frequencies w.r.t. the time coordi-
nate t:

ϕ(t, x) = e−iωtψω(u), u = tanhx. (2.7)
2In saying this we are supposing that the geodesical completion of the wedge is the de Sitter manifold.

Would we suppose that the geodesical completion be, say, its double covering, the result would change
completely. In particular there would be no thermal state at all [28].
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ψω(u) are eigenfunctions of the continuous spectrum of the well-known quantum mechan-
ical scattering problem:[

− ∂2
x +

m2

cosh2 x

]
ψω(u) = ω2ψω(u), u = tanhx, µ2 = m2 − 1

4
. (2.8)

It is clear now why we consider m2 > 1/4 – we want to work with real µ. For any given
ω ≥ 0 the Ferrers functions Piω− 1

2
+iµ

(±u) – also known as Legendre functions on the cut
[31] – are two independent solutions of the above equation. At large positive x the wave,
which behaves as

ψω(tanhx) ∼ eiωx, x→∞ (2.9)

, is purely right moving (at large negative x→ −∞ the wave which behaves as ψω(− tanhx) ∼
e−iωx is purely left moving). The quantized fields should satisfy the canonical commuta-
tion relations: [

ϕ̂(t, x1), ϕ̂(t, x2)
]

= 0,
[
ϕ̂(t, x1), ˙̂ϕ(t, x2)

]
= iδ(x1 − x2). (2.10)

But the double degeneracy of the energy level ω points towards the introduction of two
pairs of creation and annihilation operators for each level:[

aω1 , a
†
ω2

]
= δ(ω1 − ω2),

[
bω1 , b

†
ω2

]
= δ(ω1 − ω2),

[
aω1 , bω2

]
=
[
aω1 , b

†
ω2

]
= 0.
(2.11)

Then the mode expansion of the field operator ϕ̂(t, x), which obeys (2.6) and (2.10) can
then be written as follows:

ϕ̂(t, x) =

∫ ∞
0

dω

2π

[
e−iωt

(
ψω(u)aω + ψω(−u)bω

)
+ eiωt

(
ψ∗ω(u)a†ω + ψ∗ω(−u)b†ω

)]
, (2.12)

where

ψω(u) =
√

sinh(πω) Γ
(1

2
+ iµ− iω

)
Γ
(1

2
− iµ− iω

)
Piω− 1

2
+iµ

(u). (2.13)

The normalization has been chosen according with the completeness relation (B.1) shown
in Appendix A. By normal ordering w.r.t. the Fock vacuum of the aω and bω operators
we get the free Hamiltonian in the standard form

: H :=

∫ +∞

−∞
dx
√
g : T 0

0 :=

∫ +∞

0

dω ω
(
a†ωaω + b†ωbω

)
, (2.14)

where the orthogonality relation for the associated Legendre functions [32] is used. Note
that the range of integration over ω starts from zero (rather than m as for a massive field
in flat space). This is because the "mass" term in the action

Sm =

∫
d2x
√
g m2ϕ2(t, x),

vanishes near the horizon (recall that √g = (coshx)−2).
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2.3 Thermal two-point functions

The quantum mechanical average over a thermal state of inverse temperature β is given
by

〈O〉β =
Tr ρO
Tr ρ

, ρ ≡ e−βH . (2.15)

It allows to compute the thermal two-point function at inverse temperature β by assuming
the Bose-Einstein distribution of the energy levels〈

a†ωaω′
〉
β

=
〈
b†ωbω′

〉
β

= (eβω − 1)−1δ(ω − ω′). (2.16)

Eqs. (2.12) and (2.14) give the following expression for the Wightman function:

Wβ(t1 − t2, x1, x2) = 〈ϕ̂(t1, x1)ϕ̂(t2, x2)〉β =

∫ ∞
0

dω

4π2

[
e−iω(t1−t2)

1− e−βω

(
ψω(u1)ψ∗ω(u2)+

+ ψω(−u1)ψ∗ω(−u2)

)
+
eiω(t1−t2)

eβω − 1

(
ψ∗ω(u1)ψω(u2) + ψ∗ω(−u1)ψω(−u2)

)
=

=

∫ ∞
−∞

e−iω(t1−t2) 1− e−2πω

1− e−βω
P̃µ(ω, u1, u2) dω, (2.17)

where

P̃µ(ω, u1, u2) =
eπω
(
Piω− 1

2
+iµ

(u1)P−iω− 1
2
−iµ(u2) + Piω− 1

2
+iµ

(−u1)P−iω− 1
2
−iµ(−u2)

)
8 coshπ(µ− ω) coshπ(µ+ ω)

. (2.18)

The states defined by the above two-point functions are mixed. The only pure state is
obtained in the limit β →∞.

2.4 Invariant or so-called Bunch-Davis state

As it is stated before cosmologists usually use the spatially flat Poincaré coordinates [16–
18], and consider the state, which is invariant with respect to the de Sitter isometry group.
In this section, we will rewrite this invariant state as a thermal states in the static patch.
In fact, such states is not unique (see [33–35]). However, if we consider only states that
correspond to the locally flat propagators, then the only one invariant state left, and this is
the so-called the Bunch Davis vacuum [36, 37]. Also well-known Bunch Davis propagator
is as follows:

WBD(Xα
1 X2α) =

1

4 coshπµ
P− 1

2
+iµ(Xα

1 X2α) =
1

4 coshπµ
P− 1

2
+iµ(Z). (2.19)

The argument of this function is the hyperbolic distance between two points on the entire
hyperboloid. The restriction to the static patch of the Bunch-Davies state is done with a
simple substitution:

Z = −cosh(t2 − t1) + sinh x1 sinhx2

coshx1 coshx2

,

and one can see the following symmetry: t2 − t1 → t2 − t1 + 2πi, which signals, that pure
state in Poincaré coordinates is a mixed state in static patch, moreover this mixed state
is thermal one with β = 2π. Indeed if we consider the case β = 2π the two-point function
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(2.17) is the de Sitter invariant and coincides with the restriction to the static patch of
the Bunch-Davies two-point function (2.19):

W2π(t1 − t2, x1, x2) = WBD(Z) =
1

4 coshπµ
P− 1

2
+iµ(Z). (2.20)

On the other hand for arbitrary β the two–point function Wβ(t1 − t2, x1, x2) and its
permuted function do not respect the de Sitter isometry because their periodicity thermal
property in imaginary time t → t + iβ is incompatible with the geometry of the global
de Sitter manifold, which has the following symmetry (2.5), the only exception being
β = 2π. The others invariant states (so-called α states) in terms of the static patch states
are disscussed in [24].

2.5 Light-like separation

For light–like separations the propagators should behave as in Minkowski space. In the
Bunch-Davies invariant case this comes immediately from Eq. (2.20):

WBD(Z ≈ −1) ≈ − 1

4π
log(1 + Z) ≈ − 1

4π
log
[
t2 − (x1 − x2)2

]
. (2.21)

For arbitrary β at light-like separation large values of ω’s dominate in the integral (2.17).
For large ω we may approximate Piω− 1

2
+iµ

(tanhx1) ≈ eiωx1/Γ(1− iω) and get the leading
term

Wβ(t, x1, x2) ≈
∞∫

1

dω

2π

e−iωt

2ω

(
e−iω(x1−x2) + eiω(x1−x2)

)
≈ − 1

4π
log
[
t2 − (x2 − x1)2

]
.

The cutoff in this integral is order of R−1 — the radius of the de Sitter universe, which
we set to one. The approximation works for |ω| much larger than m and R−1. The
dependence on the temperature is lost in this high energy limit: only the Hadamard term
survives.

2.6 Anomalous singularities at the horizon

When the temperature is an integer multiple of the Gibbons-Hawking temperature, i.e.
when β = 2π/N , we may use Eq. (2.17) to derive another representation of the two-point
function as a finite sum of Legendre functions, compare to the infinite Matsubara-type
series:

Wβ(X1, X2) =
∞∑
n=0

W∞(t1 − inβ, x1, t2, x2) +
∞∑
n=1

W∞(t2, x2, t1 + inβ, x1).

Where W∞ is Wightman function with zero temperature. So for the cases β = 2π/N (see
also [35, 38]):

W 2π
N

(t1 − t2, x1, x2) =

∫ +∞

−∞
e−iω(t1−t2) 1− e−2πω

1− e− 2πω
N

P̃ω,µ(u1, u2) dω =

=
1

4 coshπµ
P− 1

2
+iµ

[
Z

(
t1 − t2 − iε, x1, x2

)]
+
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+
1

4 coshπµ

N−1∑
n=1

P− 1
2

+iµ

[
Z

(
t1 − t2 − i

2πn

N
, x1, x2

)]
. (2.22)

The first term on the RHS is exactly the Bunch–Davies de Sitter invariant Wightman
function; this is singular at Z = −1. The extra terms become singular only when the two
points approach either the left or the right horizon:

X1 = X(λ+ c1, λ), X2 = X(λ+ c2, λ+ ∆λ). (2.23)

In the limit λ→ ±∞ the above events belong to the horizons. Then:

Z

(
c1 − c2 − i

2πn

N
, λ, λ+ ∆λ

)
= −

cosh
(
c1 − c2 − i2πn

N

)
+ sinhλ sinh(λ+ ∆λ)

coshλ cosh(λ+ ∆λ)
→ −1.

Then taking in Eq. (2.22) the horizon limit gives W 2π
N

(λ → ∞) ≈ N WBD(λ → ∞).
For generic β, the limit λ→∞ may be obtained by performing manipulations similar to
those which led to (??):

Wβ(λ→∞) ≈ −1

2

∫ +∞

−∞
dω

1(
eβ(ω+i0) − 1

)
sinhπ(ω + i0)

e−2iωλ.

Due to presence of the double pole at ω = −i0 the answer is as follows:

Wβ(λ→∞) ≈ 2π

β

λ

π
≈ 2π

β
WBD(λ→∞).

A remarkable fact is the following: for light–like separations inside the static patch the
dominant contribution to the propagator comes from large ω’s; on the contrary, at the
horizon small ω’s provide the leading contribution. This is because the horizon is the
boundary of the patch; the main contribution comes from the infrared rather than ultra-
violet frequencies. The infrared limit of the propagator depends on the temperature, β,
but is independent of the mass, m.

2.7 Dependence on coordinate choice

The peculiarity of the propagator appears on the horizon, but the position of the horizon
depends on the position of the static patch, which we have chosen in (2.2). The purpose
of this section is to clarify that the peculiarity is associated with the specific choice of the
state, rather than the specific choice of the coordinate system. Let us consider the β = π
case. Then:

Wπ(X1, X2) =
1

4 coshπµ
P− 1

2
+iµ

(
− cosh(t2 − t1) + sinh(x1) sinh(x2)

cosh(x1) cosh(x2)

)
+

+
1

4 coshπµ
P− 1

2
+iµ

(
− − cosh(t2 − t1) + sinh(x1) sinh(x2)

cosh(x1) cosh(x2)

)
. (2.24)

Inverse coordinate transformation inside the static patch is:

x = Arctanh
(
X1
)
, t = Arcsinh

( X0√
1− (X1)2

)
,
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then (2.24) can be rewritten as follows:

Wπ(X1, X2) =
1

4 coshπµ
P− 1

2
+iµ

(
X0

1X
0
2 −X1

1X
1
2 −X2

1X
2
2

)
+

+
1

4 coshπµ
P− 1

2
+iµ

(
−X0

1X
0
2 −X1

1X
1
2 +X2

1X
2
2

)
.

In fact, the argument of Legendre function in the second term can be obtained from the
argument in the first term. For that one of the points is reflected with respect to the axes
X0 and X2. This result resembles the method of image charges from classical electro-
dynamics, and actually the Wightman function (2.24) is the solution of the equations of
motion with specific boundary conditions, thus the peculiarity of the propagator on the
horizon is a property of the particular state, but not of the coordinate system.

2.8 Different temperatures for left and right movers

In [24] we constructed general time translation invariant states

〈â†ωâω′〉 = δ(ω − ω′) 1

eβR(ω)ω − 1
and 〈b̂†ω b̂ω′〉 = δ(ω − ω′) 1

eβL(ω)ω − 1
. (2.25)

We gave in particular a full treatment for states of arbitrary global (inverse) temperature

βL(ω) = βR(ω) = β, (2.26)

and provided new integral representations for their correlation functions. Taking inspi-
ration from the consideration of Unruh state for black holes, we enlarge that study and
consider different global temperatures for the left and the right–moving modes:

βL(ω) = βL, βR(ω) = βR. (2.27)

The Wightman function is the sum of two contributions

WβLβR(X1, X2) = WL,βL(X1, X2) +WR,βR(X1, X2), (2.28)

where

WL,β(X1, X2) =

∫ ∞
0

dω

4π2

[
e−iω(t1−t2)ψω(−x1)ψ∗ω(−x2)

1− e−βω
+ eiω(t1−t2)ψ

∗
ω(−x1)ψω(−x2)

eβω − 1

]
,(2.29)

WR,β(X1, X2) =

∫ ∞
0

dω

4π2

[
e−iω(t1−t2)ψω(x1)ψ∗ω(x2)

1− e−βω
+ eiω(t1−t2)ψ

∗
ω(x1)ψω(x2)

eβω − 1

]
.(2.30)

The formal proof of the KMS periodicity property goes as follows:

WR,β(X2(t2, x2), X1(t1, x1)) =
1

4π2

∞∑
n=0

∫ ∞
0

e−iω(t2−t1−inβ)ψω(x2)ψ∗ω(x1)dω+

+
1

4π2

∞∑
n=1

∫ ∞
0

eiω(t2−t1+inβ)ψ∗ω(x2)ψω(x1) dω = WR,β(X1(t1 − iβ, x1), X2(t2, x2))

(2.31)

There holds the exchange symmetry

WR,βR(X1(t1, x1), X2(t2, x2)) = WL,βR(X1(t1,−x1), X2(t2,−x2)). (2.32)
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When βL = βR = 2π the Wightman function (2.28) respects the de Sitter isometry [24,
39–44], i.e. it is a function of the complex de Sitter invariant variable

Z = −cosh(t2 − t1) + sinh x1 sinhx2

coshx1 coshx2

,

with the locality cut on the negative reals Z ≥ −1. Let us consider now the behavior at
the horizon of the propagator (2.28). Points of the right (left) future horizon are obtained
in the following limit

lim
λ→+∞

X(λ,±(λ− χ)) = lim
λ→+∞

 sech (λ− χ) sinhλ
± tanh(λ− χ)
sech (λ− χ) coshλ

 =

 eχ

±1
eχ

 . (2.33)

Points of the left (right) past horizon are obtained in the limit λ → −∞ of the above
expression. In all cases the interval between two points having the same finite coordinate
λ is spacelike:

L12 = − 2(cosh(χ1 − χ2)− 1)

cosh(λ− χ1) cosh(λ− χ2)
< 0, (2.34)

becoming light–like only in the limit λ→ ±∞.
Using the asymptotics of the modes:

Piω− 1
2

+iµ
(tanhx) ≈

x→∞

eiωx

Γ(1− iω)
, (2.35)

Piω− 1
2

+iµ
(− tanhx) ≈

x→∞

[
Γ
(
− iω

)
e−iωx

Γ
(

1
2

+ iµ− iω
)
Γ
(

1
2
− iµ− iω

) +
cosh(µπ)Γ

(
iω
)
eiωx

π

]
,

(2.36)

and the eq. (A.1), one can obtain the behaviour of WR,βR and WL,βL separately at e.g.
the right side of the horizon. As we can see from Eq. (2.35), in this region WR,βR depends
only on the difference x1 − x2, which does not grow when both points are taken to the
same side of the horizon. It means, that this contribution to the Wightman function is
regular near the right side of the horizon. At the same time, in the same region WL,βL

depends on the both x1 − x2 and x1 + x2, as we can see from Eq. (2.36). The latter sum
is infinitely growing near the horizon. As the result, using (A.1) one obtains that:

WβLβR

(
X(λ, χ1 − λ), X(λ, χ2 − λ)

)
≈

≈ WL,βL

(
X(λ, χ1 − λ), X(λ, χ2 − λ)

)
≈ 1

βL
λ, λ→ +∞. (2.37)

Behavior near the left horizon can be also found, and follows from the relation:

WβLβR (X(t1, x1), X(t2, x2)) = WβRβL (X(t1,−x1), X(t2,−x2)) .

Namely parity x→ −x plus rearrangement of temperatures βL ↔ βR leave the two-point-
function invariant. As a result, for λ→ −∞ we obtain

WβLβR

(
X(λ, χ1 − λ), X(λ, χ2 − λ)

)
≈ WR,βR

(
X(λ, χ1 − λ), X(λ, χ2 − λ)

)
≈ 1

βR
|λ|.

(2.38)

Thus light–like singularity at the horizons depends on the state of the theory. In particular,
at the right horizon it depends only on βR, while at the left horizon it depends on βL.
This shows that such a peculiar behavior of propagators is present due to the interplay
between the waves that are falling down and reflected from the m2/ cosh2 x potential.
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2.9 General dimension

The (D+1)-embedding coordinates and the invariant scalar product for theD–dimensional
static patch are given by

X0 = sinh(t) sech(x), Xi = tanh(x) ~yi, XD = cosh(t) sech(x), ~yi~yi = 1, (2.39)

Z = ηµν X
µ
1 X

ν
2 = −cosh(t2 − t1) + ~y1 · ~y2 sinhx1 sinhx2

coshx1 coshx2

. (2.40)

The Bunch-Davies Wightman function [36, 37, 39, 42, 43, 45–47] corresponding to the
inverse temperature βL = βR = 2π [35, 39, 41–43] is given by

W2π(Z) =
Γ
(
D−1

2
+ i µ

)
Γ
(
D−1

2
− i µ

)
2(2π)

D
2

(Z2 − 1)−
D−2
4 P

−D−2
2

− 1
2

+iµ
(Z), (2.41)

where µ =
√
m2 − (D − 1)2/4. It has the standard Hadamard singularity near Z = −1.

Points of the future and past horizons are attained in the following limits

lim
λ→±∞

X(λ, (λ− χ)) = lim
λ→∞

 sech (λ− χ) sinhλ
tanh(λ− χ)~y
sech (λ− χ) coshλ

 =

 ±eχ±~y
eχ

 (2.42)

Two events on the horizons are spacelike separated unless ~y1 = ~y2. As in Eq. (3.17) for
β = 2π

N
in the horizon limit one gets:

W 2π
N

(λ→ +∞) ≈ N W2π(λ→ +∞) ≈ −N
Γ
(
D−2

2

)
22+(D−2) 3

2π
D
2

e(D−2)λ. (2.43)

As in Rindler space the singularity of the propagator on the horizon depends on the
temperature.

2.10 Stress-energy tensor in the 2D de Sitter space

Let us consider now the expectation value of the stress–energy tensor in the 2D theory in
the static patch. We use point-splitting regularization method. It is discussed in details
in Appendix C. To set up notations let us discuss first the de Sitter invariant case β = 2π.
When the two arguments of the Wightman function are taken very close to each other,
one has that

W2π(X+, X−) ≈ − 1

4π

(
H− 1

2
+iµ +H− 1

2
−iµ + log

[
(V− − V+)(U+ − U−)

4 cosh2(V − U)

])
, (2.44)

where H− 1
2

+iµ = ψ
(

1
2

+ iµ
)

+γe are the harmonic numbers; the definitions of X±, V± and
U± can be found in appendix B. Since

∂V+∂V−W2π(Z) ≈ − 1

4π(V+ − V−)2
+

1

48π
, and ∂U+∂U−W2π(Z) ≈ − 1

4π(U+ − U−)2
+

1

48π
.

(2.45)

the covariant point splitting regularization gives

〈TUV 〉2π = − m2

8π cosh2(V−U
2

)

(
ψ

(
1

2
+ iµ

)
+ ψ

(
1

2
− iµ

)
+ 2γe + log

[
ε2 tαt

α
])

, (2.46)

〈TUU〉2π = −
(

1

4πε2(tαtα)
+

R

24π

)
tU tU
tαtα

, (2.47)

〈TV V 〉2π = −
(

1

4πε2(tαtα)
+

R

24π

)
tV tV
tαtα

. (2.48)
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After regularization we obtain the well known answer [36], see also [48, 49].

〈: Tµν :〉2π = − 1

4π
m2

[
ψ

(
1

2
+ iµ

)
+ ψ

(
1

2
− iµ

)
+ 2γe

]
gµν +

R

48π
gµν (2.49)

The expectation value of the stress–energy tensor with two temperatures βL and βR can be
obtained starting from Eq. (2.28). The most interesting case in this situation is the near
horizon limit. For instance, close to right horizon a lengthy but not difficult calculation
gives

∂V +∂V −WβLβR(X+, X−) ≈
∫ ∞
−∞

dω

4π

ω

eβLω − 1
eiω(V +−V −) =

π

12β2
L

− 1

4π

1

(V + − V −)2
,

(2.50)

and

∂U+∂U−WβLβR(X+, X−) ≈

≈
∫ ∞
−∞

dω

4π

ω sinh2 πω eiω(U+−U−)

cosh π(ω − µ) coshπ(ω + µ)

[
1

eβRω − 1
+

cosh2 µπ

sinh2 πω

1

eβL − 1

]
. (2.51)

The above expressions simplify when the temperatures of the left– and right–movers
coincide: βR = βL = β. Then the regularized stress-energy tensor in the near horizon
limit takes the form:

〈: Tµν :〉 ≈ Θµν +
R

48π
gµν , (2.52)

where

ΘUU = − 1

12π
C1/2∂2

UC
−1/2 +

π

12β2
=

π

12

(
1

β2
− 1

(2π)2

)
,

ΘV V = − 1

12π
C1/2∂2

VC
−1/2 +

π

12β2
=

π

12

(
1

β2
− 1

(2π)2

)
,

ΘUV = ΘV U = 0.

the de Sitter covariance is recovered only when β = 2π. Note that for generic values of
βL and βR the expectation valur 〈: Tµν :〉 is singular in the free falling reference frame.

3 Quantum fields in the Rindler space-time
We have seen that in the de Sitter space anomalous divergence arise on the horizon. So
in this section we will do similar calculations in the Rindler space-time, because as it is
stated before, the metric in the Rindler space-time is an approximation of the metric in
the static de Sitter space near the horizons. This section mainly contains a recapitulation
of known facts. However some of them are new. Also see [25].

3.1 Geometry, modes and Wightman function

The Rindler space covers right quarter of the Minkowski space-time (see Fig. 3):(
t
x

)
=

(
eξ sinh (η)
eξ cosh (η)

)
. (3.1)
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Right Wedge
Rindler space

Left Wedge

ho
riz
on

horizon

Figure 3: Penrose diagram of the Rindler space. The Rindler space is bordered by a
Killing horizon.

Rindler space is invariant under one-parameter group of boosts:(
cosh(α) sinh(α)
sinh(α) cosh(α)

)(
eξ sinh (η)
eξ cosh (η)

)
=

(
eξ sinh (η + α)
eξ cosh (η + α)

)
. (3.2)

Here η is time-like coordinate, ξ is the space-like coordinate. The proper acceleration is
choosen to be one. As it is stated before, for real3 values of η and ξ the Rindler coordinates
(3.1) cover only the right wedge; this is causally disconnected from the left wedge. In the
above coordinates the metric has the following form:

ds2 = e2ξ
(
dη2 − dξ2

)
. (3.3)

The half-lines t = ±x, x > 0 are the past and the future horizons. Geodesic distance
between two points in the Right wedge is given by

L12 = (t2 − t1)2 − (x2 − x1)2 = 2e(ξ1+ξ2) cosh(η2 − η1)− e2ξ2 − e2ξ1 . (3.4)

Also please note the obvious symmetry of L12 under the exchange

ξ1 ←→ ξ2. (3.5)

Lorentz transformations of the wedge correspond to (time) translations in the η variable:
η → η + α, dilatations in Minkowski space X → eβX correspond to the shift ξ → ξ + β.

As regards the light cone variables

u = t− x = −e(ξ−η) = −e−U , v = t+ x = e(ξ+η) = eV , (3.6)
3Analytical continuation to the others wedges is an important issue, which, however, is beyond the

topic under discussion
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they are transformed as follows:

u→ e−γu,

v → eγv,

u→ eβu,

v → eβv,

U → U + γ,

V → V + γ,

U → U − β,

V → V + β.
(3.7)

The Rindler space is geodesically incomplete. Of course a Cauchy surface in it, say η = 0,
is not a Cauchy surface for the whole Minkowski spacetime. As a consequence the modes
constructed by canonical quantization in the Rindler wedge do not constitute a basis for
the whole Minkowski space–time. It is well-known that to obtain general Hilbert space
representations of the fields, one needs to construct also the modes defined in the left
wedge [50]. A less known but powerful alternative is to resort to the theory of generalized
Bogoliubov transformations4 which makes use only of the modes of the right wedge [29,
30].

The Klein–Gordon equation for a massive scalar field in two-dimensions is as follows:(
∂2
η − ∂2

ξ + e2ξm2
)
ϕ(η, ξ) = 0. (3.8)

By separating the variables one gets a Schrodinger eigenvalue (textbook) problem in an
exponential potential V (ξ) = m2e2ξ. Because the potential increases infinitely as ξ → +∞
we have two types of solutions of the eqn. (3.8): the first increases at infinity while the
second one decreases. Normalizable modes (which exponentially decay as ξ → +∞)
are proportional to Macdonald functions Kiω(meξ). Note, that these modes are linear
combinations of left-moving and right-moving waves. The canonical field operator is as
follows

ϕ̂(η, ξ) =
1

π

∫ +∞

0

(
e−iωη b̂ω + eiωη b̂†ω

)
Kiω

(
meξ

)√
sinhπω dω, (3.9)

where the creation and annihilation operators obey the standard commutation relations:

[b̂ω, b̂
†
ω′ ] = δ(ω − ω′), [b̂ω, b̂ω′ ] = 0.

The so-called Fulling vacuum [13, 51] is identified by the condition

b̂ω|0R〉 = 0, ω ≥ 0. (3.10)

It is a pure state and the corresponding two-point function is given by

W∞(X1, X2) = 〈0R| ϕ̂(X1)ϕ̂(X2)|0R〉 =
1

π2

∫ ∞
0

e−iω(η1−η2) Kiω(meξ1)Kiω(meξ2) sinhπω dω.

(3.11)
But as one can see, this two-point function is not invariant under Poincaré group of the
entire Minkowski space. It is well-know that the invariant state is thermal one in terms of
modes in Right wedge. The thermal equilibrium average of an operator O at temperature
T = β−1 is defined in quantum mechanics as follows:

〈Ô〉 =
Tr e−βĤÔ
Tr e−βĤ

, (3.12)

where Ĥ is the Hamiltonian of the system. In terms of (3.9) it has the following form:

: Ĥ :=

∫ ∞
0

dωωb̂†ω b̂ω. (3.13)

4Starting from pure states generalized Bogoliubov transformations may produce mixed states while
standard Bogoliubov transformations cannot.
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Note that the spectrum of the field starts from zero and not from mass, as that is the case
in Minkowski space-time. In the case under consideration thermal two point function is
given by the following form:

Wβ(X1(η1, ξ1), X2(η2, ξ2)) =
1

π2

∫ +∞

−∞

eiω(η1−η2)

eβω − 1
Kiω(meξ1)Kiω(meξ2)sinhπω dω. (3.14)

The two-point function (3.14) is time-translation invariant (and therefore it provides an
equilibrium state at least at tree-level). When β = 2π an explicit calculation of the
integral shows that the Wightman function in Eqn. (3.14) can be extended to the whole
complex Minkowski spacetime (minus the causal cut) and it is actually Poincaré invariant
[14, 29, 30]:

W2π(X1, X2) =
1

2π
K0

(
m
√
−L
)
. (3.15)

At close points (when mL → 0) it has the standard ultraviolet (Hadamard behaviour)
divergence with the correct coefficient 1/4π :

1

2π
K0

(
m
√
−L
)
≈ − 1

4π
log(−m2 L). (3.16)

Inside the Rindler wedge, the main contributions to the integral (3.14) for light–like
separations come from high energies ω � meξ1,2 (ξ1,2 fixed). This is the ultraviolet effect
and the divergence does not depend on the temperature. This is true for any β. However,
when β 6= 2π there are extra (anomalous) singularities at the horizon — the boundary of
the wedge, which of course is also light–like. We will show this now.

When the temperature is an integer multiple of the canonical one (β = 2π
n
) a simple

formula is available [24, 35]:

W 2π
N

(X1, X2) =
N−1∑
k=0

W2π

(
X1

(
η1 −

2πi k

n
, ξ1

)
, X2 (η2, ξ2)

)
. (3.17)

Let us consider the simplest case β = π:

Wπ =
1

2π
K0

(
m
√
e2ξ1 + e2ξ2 − 2eξ1+ξ2 cosh ∆η

)
+

1

2π
K0

(
m
√
e2ξ1 + e2ξ2 + 2eξ1+ξ2 cosh ∆η

)
.

(3.18)

Points of the horizons may be attained as follows:

lim
λ→±∞

X(λ, χ∓ λ) = lim
λ→∞

(
eχ∓λ sinhλ
eχ∓λ coshλ

)
=

1

2

(
±eχ
eχ

)
. (3.19)

The interval between two points having the same coordinate λ is spacelike; for instance

L12 = (X1(λ, χ1 − λ)−X2(λ, χ2 − λ))2 = −e−2λ (eχ1 − eχ2)2 < 0; (3.20)

furthermore

(X1(λ− iπ, χ1 − λ)−X2(λ, χ2 − λ))2 = −e−2λ (eχ1 + eχ2)2 = L12 + 4e−2λeχ1+χ2 . (3.21)

The first term in (3.18) is singular for any two light-like separated points in the Rindler
wedge. When the two points are both approaching either the future or the past horizon
also the second term diverges, and it does exactly as the first term; when λ→ +∞ :

Wπ

[
X(λ, χ1 − λ), X(λ, χ2 − λ)

]
≈ − 2

4π
log(−m2 L12), as λ→ +∞. (3.22)
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Similarly for β = 2π
N

and λ→ +∞.

W 2π
N

[
X(λ, χ1 − λ), X(λ, χ2 − λ)

]
≈ −N

4π
log(−m2 L12) = − 1

2β
log(−m2 L12). (3.23)

In the horizon limit (3.19) the dominant contribution to the integral (3.14) comes from
the infrared region ω → 0. Using appendix A and asymptotic form of the modes near
horizon one can show that (3.23) remains true for general β. The calculation is similar
to the one preformed in [24]. Such a dependence of the coefficient of the singularity at
light–like separation (at the horizon) implies that the thermal state cannot be continued
to the entire Minkowski space–time.

It is possible to introduce more general time translation invariant (at tree–level) states
by letting the temperature depend on the energy:

W(X1, X2) =
1

π2

∫ ∞
0

[
e−iω(η1−η2)

1− e−β(ω)ω
+

eiω(η1−η2)

eβ(ω)ω − 1

]
Kiω(meξ1)Kiω(meξ2)sinh πω dω.

(3.24)
These states also respect the exchange symmetry (3.5).

Such a behaviour at the horizon is quite unexpected result, because massive term is
included into the action as:

Sm =

∫
dηdξ

√
gm2ϕ2(η, ξ) =

∫
dηdξe2ξm2ϕ2(η, ξ),

and degenerates at the horizon exponentially (
√
g = e2ξ → 0). So it seems that locally

near horizon the field should behaves as the massless one.

3.2 General dimension

The discussed anomalous singularity of propagators is not a property of just two dimen-
sional case. For the field in general dimension we obtained the same result. Consider
D − 2 extra flat transverse spatial dimensions ~z. Then the Rindler metric is as follows:

ds2
D = e2ξ

(
dη2 − dξ2

)
− d~z2. (3.25)

The modes can be represented as ϕD(η, ξ, ~z) = ei
~k⊥~zϕ~k⊥(η, ξ) where ϕ~k⊥(η, ξ) obeys Eq.

(3.8) with the effective mass m2 + k2
⊥. Therefore the field operator can be expanded as

ϕ̂(η, ξ, ~z) =

∫ +∞

−∞

dD−2k⊥

(2π)
d
2

∫ +∞

0

dω

π

√
sinhπω

[
e−iωη+i

~k⊥~z b̂
ω,~k⊥

+ eiωη−i
~k⊥~z b̂†

ω,~k⊥

]
Kiω

(√
m2 + k2eξ

)
.

(3.26)

The Wightman function at temperature β is as follows:

WD
β (X1, X2) =

=

∫ +∞

−∞

dD−2k⊥
(2π)d

∫ +∞

−∞

dω

π2

sinh(πω)

1− e−βω
e−iω(η1−η2)ei

~k⊥(~z1−~z2)Kiω

(√
m2 + k2eξ1

)
Kiω

(√
m2 + k2eξ2

)
(3.27)

Poincaré invariance is respected for β = 2π [30]:
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∫ +∞

−∞

ddk

(2π)d

∫ +∞

−∞

dω

2π2
eπωe−iω(η1−η2)ei

~k⊥(~z1−~z2)Kiω

(√
m2 + ~k2

⊥e
ξ1
)
Kiω

(√
m2 + ~k2

⊥e
ξ2
)

=

=

∫ ∞
−∞

dD−2k⊥

2π (2π)
D−2
2

ei
~k⊥∆~zK0

(√
m2 + ~k⊥

√
−L2

)
=

=
1

2π

(√
−L2 + |∆~z|2

m

)−D−2
2

K−D−2
2

(
m
√
−L2 + |∆~z|2

)
, (3.28)

where ∆~z ≡ ~z1 − ~z2 and L2 is two dimensional Rindler space part of Geodesic distance
and coincide with (3.4):

L2 = 2e(ξ1+ξ2) cosh(η2 − η1)− e2ξ2 − e2ξ1 . (3.29)

Then geodetic distance between two points is defined as follows:

LD12 = (∆t)2 − (∆x)2 − (∆~z)2 = L2 − (∆~z)2. (3.30)

The anomalous divergence on the horizon for generic β 6= 2π goes precisely as in the
previous section. Let us consider the horizon limit ξ1 ≈ ξ2 → −∞, then L2 → 0. Also let
us consder the following limig: L2 � |∆~z|2 � m−2. So near the horizon for the β = 2π

N
:

Wβ(X1, X2) ≈ N
Γ
(
D−2

2

)
4π

1

|∆~z|D−2
. (3.31)

(3.31) has a standart peculiarity in the limit |∆~z| → 0, but with wrong coefficient N .
Also (3.31) can be obtained approximately from the mode expansion. Let us put ξ1 =
ξ2 = λ→ −∞, then:

Kiω

(√
m2 + k2

⊥e
λ
)
≈ −

√
π

ω sinh πω
sin
[
ω log

(√
m2 + k2

⊥e
λ
)
− ω log(2)− γω

]
, γ0 = 0,

(3.32)
and

W ≈ −
∫ +∞

−∞

dωdkD−2
⊥

πω(2π)D−2

eiωtei
~k⊥∆~z

eβω − 1
cos
[
2ω log

(√
m2 + k2

⊥e
λ
)
− 2ω log(2)− 2γω

]
.

Using (A.1):

W ≈ −
∫ +∞

−∞

dkD−2
⊥

(2π)D−2

eiωtei
~k⊥∆~z

β
2 log

(√
m2 + k2

⊥e
λ
)

=

= − 2

β

∫ +|k⊥|max

0

|k⊥|
D−2
2 d|k⊥|

(2π)
D−2
2 |∆~z|D−4

2

JD−4
2

(
|k⊥||∆~z|

)
log
(√

m2 + |k⊥|2eλ
)
≈

≈ − 2

β

∫ +|k⊥|max

0

|k⊥|
D−2
2 d|k⊥|

(2π)
D−2
2 |∆~z|D−4

2

JD−4
2

(
|k⊥||∆~z|

)
log
(
|k⊥|eλ

)
.

Note that we consider only |k⊥| < |k⊥|max, because in this case the approximation (3.32)
works. Let us denote eλ/|∆~z| ≡ ε� 1 and |k⊥| ≡ |K⊥|/|∆~z|:

W ≈ − 2

β

1

(2π)
D−2
2 |∆~z|D−2

∫ +|k⊥|max

0

|K⊥|
D−2
2 d|K⊥|JD−4

2

(
|K⊥|

)
log
(
|K⊥|ε

)
≈

≈ 2

β

1

(2π)
D−2
2 |∆~z|D−2

∫ +|k⊥|max

0

|K⊥|
D−2
2 d|K⊥|JD−4

2

(
|K⊥|

)
K0

(
|K⊥|ε

)
≈

≈ 2

β

1

(2π)
D−2
2 |∆~z|D−2

Γ
(D − 2

2

)
2
D−4
2 . (3.33)
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This result coincide with (3.31), if β = 2π
N
.

3.3 Stress energy tensor in 2D

Here we complete the discussion of the massive scalar field in 2D Rindler spacetime by
examining the renormalized stress-energy tensor at various temperatures. As in the de
Sitter space case we use Point-splitting method, see C. To set up the notations let us
summarise the standard expression resulting from point splitting regularization in the
Poincaré invariant case β = 2π:

〈TV V 〉2π = −tV tV
4πε2

, 〈TUU〉2π = −tU tU
4πε2

,

〈TV U〉2π = 〈TUV 〉2π = −e
V−U

8π
m2
[
γe + log(m) + log

(
ε
√
tαtα

)]
, (3.34)

where tµ is the vector separating the two points of the Wightman function (3.14).
The above expressions lead to the covariantly conserved stress–energy tensor [52]:

〈: Tµν :〉2π = − 1

4π
m2 [γ + log(m)] gµν , (3.35)

where γ is the Euler-Mascheroni constant. This is obviously related to the expectation
value in Minkowski space by the coordinate transformations (3.7).

Similarly, for β = 2π/N point splitting regularization in (3.17) gives

〈: Tµν:〉 2π
N

=
N−1∑
n=1

m2

4
eV−UK2

(
2me

V−U
2 sin

(nπ
N

))[1 0
0 1

]
+

+

(
− 1

4π
m2 [γ + log(m)] +

m2

2

N−1∑
n=1

K0

(
2me

V−U
2 sin

(nπ
N

)))
gµν , (3.36)

where K0(x) and K2(x) are MacDonald functions. Violation of Poincaré invariance is
manifest.

Near the horizon this expression simplifies to:

〈: Tµν :〉 2π
N

=
1

24

(
N2 − 1

) [1 0
0 1

]
+O(eV−U), (3.37)

while at the spatial infinity it gives:

〈: Tµν :〉 2π
N
≈ − 1

4π
m2 [γe + log(m)] gµν ,

which coincides with the β = 2π case. These two types of asymptotic behaviour of the
stress energy tensor are regular. Furthermore, the second one does not depend on β. On
the other hand, the expectation value of the mixed components of stress–energy tensor
T νµ diverge at the horizon. For generic values of β, when both points in (3.27) are taken
to the horizon we get (see appendix B)

Wβ(X+, X−) ≈
∫ ∞
−∞

dω

πω

e−
iω
2

(V ++U+−V −−U−)

1− e−βω
sin

(
ω log(me

(V+−U+)
2 /2) + arg Γ(1− iω)

)
×

× sin

(
ω log(me

(V−−U−)
2 /2) + arg Γ(1− iω)

)
. (3.38)
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The expectation value may be obtained by taking into account

∂V+∂V−Wβ(X+, X−) =

∫ ∞
−∞

dω

4π

ω

1− e−βω
e−iω(V +−V −) =

= − 1

4π(V + − V −)2
+

π

12β2
= −tV tV

4πε2
+

1

24π
+

π

12β2
. (3.39)

At the horizon for arbitrary temperatures we get

〈: Tµν :〉β =
1

24

((
2π

β

)2

− 1

)[
1 0
0 1

]
+O(eV−U) (3.40)

to be compared with (3.37).

4 Conclusions and Acknowledgement
One of the main obtained results is that for non-canonical temperature (β 6= βC) propaga-
tors do not have standard Hadamard behaviour near the horizon. Furthermore, only the
propagator with the canonical temperature respects the de Sitter isometry or Poincaré
invariance, correspondingly. I.e. only in such a case propagators are functions of geodesic
distances. Moreover there is non-zero regularized stress energy tensor in the horizon limit,
when β 6= βC . This result, generally speaking, may lead to the drastic deformation of the
metric near the horizon, as in [53]. The natural question arises: how to define a gas of
exact modes with arbitrary temperature in de Sitter space?

Also, it should be noted that Cauchy surfaces in the Rindler or the static de Sitter
spaces are not equivalent to those in the geodesically complete global spaces (Minkowski
space and the global de Sitter space). Hence initial data on such "incomplete" surfaces
cannot determine uniquely dynamics of fields in the complete global spaces. In particular,
this is related to the fact that the maximally symmetric states are mixed. And different
choices of initial Cauchy surfaces may lead to substantially different dynamics [3, 5].

It is also interesting that the long-time behavior of the propagator in the de Sitter
space changes in a leap at the point β = 4π. Moreover, if we pay attention to the depen-
dence of the correlation length on the temperature, the result turns out to be opposite
to our intuition: infinite temperature limit β = 0 corresponds to the finite correlation
length. Taking into account the result of [54], where is shown that the Debye screening is
absent for the canonical temperature, one can pose the question of the physical meaning
of temperature in these cases. Namely we see several examples when intuition from ther-
modynamics in the flat space leads to expectations that do not coincide with calculations
in curved spaces. This in turn means that, for example, the process of thermolization in
the de Sitter space may turn out to be more complicated than we expect [55]. An example
is the previously noted infrared features of loop corrections: [1–5].

I would like to thank P.A.Anempodistov, D.V. Diakonov, U. Moschella and especially
my supervisor E.T. Akhmedov for valuable discussions and shearing their ideas. I would
also like to thank my family for their support.
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A Leading infrared contribution
The behavior of various Wightman functions discussed above at the horizons is governed
by the integral of the form:∫ +∞

−∞

dω

ω + iε

eiωθ

eβ(ω+iε) − 1
, where |θ| � 1.

The choice of the shifts of the poles here reproduces the results in the case β = 2π/N
but it can also justified by general distributional methods. The contour in closed in the
upper half-plane for positive values of θ and in the lower half for negative ones. In the
first case the double pole at ω = −iε does not contribute. Contributions from other poles
are suppressed. For negative θ the leading contributions in the limit θ → −∞ comes from
the double pole at ω = −iε:∫ +∞

−∞

dω

ω + iε

eiωθ

eβ(ω+iε) − 1
≈

{
0 if θ > 0
2π
β
θ if θ < 0

as |θ| � 1. (A.1)

the answer depends on the sign of θ.

B Completeness relation of Associated Legendre Func-
tions on the cut

The orthogonality relation of Legendre functions can be found in [32]. Here we provide
an explicit (formal) calculation "completeness" relation of Legendre functions to calculate
the Canonical Commutation Relations (2.10) which, by introducing cos θ = tanhx = u,
we rewrite as follows:

sin θ1 sin θ2 δ(cos θ1 − cos θ2) =

∫ ∞
−∞

ω dω

4π sinh(πµ)
Γ
(1

2
+ iµ− iω

)
Γ
(1

2
− iµ+ iω

)
×

×

[
Piω− 1

2
+iµ

(cos θ1)
(
Piω− 1

2
+iµ

(cos θ2)
)∗

+ Piω− 1
2

+iµ
(− cos θ1)

(
Piω− 1

2
+iµ

(− cos θ2)
)∗ ]

. (B.1)

Using the holomorphic plane waves introduced in Sec. (2.4) we get the following integral
representation for Piω− 1

2
+iµ

(cos θ) :

Piω− 1
2

+iµ
(cos θ) =

iΓ(1
2

+ iµ)

2πΓ(1
2

+ iµ− iω)

∫ ∞
−∞

dte−iωt∆f(t, θ) (B.2)

where we set

f±(t, θ) = (ξl(0) · Z(t± iε, θ))−
1
2
−iµ = [cos θ + sin θ sinh(t± iε)]−

1
2
−iµ , (B.3)

∆f(t, θ) = (f+(t, θ)− f−(t, θ)) . (B.4)

Piω− 1
2

+iµ
(cos θ) is therefore the Fourier transform of the discontinuity of the holomorphic

plane waves on the real de Sitter manifold. Let us insert (B.2) in Eq. (B.1); let us consider
for instance the first term on the rhs of Eq. (B.1). By performing the integration over ω
we get

(B.1) = − i

16π sinh2 πµ

∫ ∞
−∞

dt [(∂t∆f(t, θ1)) ∆f(t, θ1)∗ −∆f(t, θ1)∂t∆f(t, θ2)∗] +
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− i

16π sinh2 πµ

∫ ∞
−∞

dt [(∂t∆f(t, π − θ1)) ∆f(t, π − θ1)∗ −∆f(t, π − θ1)∂t∆f(t, π − θ2)∗] =

= − i

16π sinh2 πµ

∑
k=−±

∫ ∞
−∞

dt [(∂tfk(t, θ1)) fk(t, θ1)∗ − fk(t, θ1)∂tfk(t, θ2)∗] +

− i

16π sinh2 πµ

∑
k=−±

∫ ∞
−∞

dt [(∂tfk(t, π − θ1)) fk(t, π − θ1)∗ − fk(t, π − θ1)∂tfk(t, θ2)∗] . (B.5)

In the second step we used the analyticity properties of the plane waves; this simplification
is valid in the two-dimensional spacetime and in any even dimensional spacetime as well.
By introducing the Mellin representation of the plane wave:

f±(t, θ) =
e∓

iπ
2

( 1
2

+iµ)

Γ(1
2

+ iµ)

∫ ∞
0

du u−
1
2

+iµe±iu(cos θ+sin θ sinh(t±iε)), 0 < θ < π, (B.6)

a few easy integrations show the validity of Eq. (B.1) and the completeness of the modes.

C Point-splitting method of covariant regularization of
stress energy tensor

Let us introduce the light-cone coordinates of the static patch:

V = t+ x, U = t− x,

ds2 =
1

cosh2(V−U
2

)
dUdV ≡ C(U, V )dUdV. (C.1)

Firstly regularization method should be discussed. We perform the actions in the same
way as in [25]. Let us consider general metric in two dimensions:

ds2 = C(u, v)dudv

and the following stress-energy tensor:

Tµν ≈ ∂µϕ∂νϕ−
1

2
gµνg

αβ∂αϕ∂βϕ.

The key idea of well-know point-splitting regularization method [48] is as follows: we
divide point x into two points x± and the average of the derivatives is replaced by the
derivatives of the Wightman function:

Tµν(x)→ Dµν〈ϕ̂(x+)ϕ̂(x−)〉,

then connect them along a curve, which is the geodesic line between them and the starting
point x:

(x+)µ(τ) = xµ + τtµ +
1

2
τ 2aµ +

1

6
τ 3bµ + .., (x−)µ(τ) = (x+)µ(−τ),

where coefficients tµ, aµ, bµ have the following relations:

aµ = −Γµνλt
νtλ, bµ = −Γµνλ(a

νtλ + tνaλ)− tσ∂σΓµνλt
νtλ.

Also we need the parallel transport matrix eµν (τ), defined as:

deµν
dτ

+ Γµρσ
dxρ

dτ
eσν = 0, eµν (τ = 0) = δµν .
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Finally:

〈T̂µν〉β = 〈∂αϕ(x+)∂βϕ(x−)〉β
(
e+α
µ e−βν −

1

2
gµνg

σρe+α
σ e−βρ

)
,

where e±αµ = eαµ(τ = ±ε) and:

eµν = δµν + τtµν +
1

2
τ 2aµν + ...

where

tµν = −Γµρνt
ρ, aµν = ΓµρνΓ

ρ
αβt

αtβ + ΓµρσΓσανt
ρtα − tαtρ∂αΓµρν .

And:

〈Tµν〉 = −
[

1

4πε2(tαtα)
+

R

24π

][
tµtν
tαtα

− 1

2
gµν

]
+ Θµν ,

finally terms which do not depend on ε and τµ gives the following answer:

〈: Tµν :〉 = Θµν +
R

48π
gµν , (C.2)

with

Θuu = − 1
12π
C1/2∂2

uC
−1/2 + state dependent terms,

Θvv = − 1
12π
C1/2∂2

vC
−1/2 + state dependent terms,

Θuv = Θvu = 0.
(C.3)

Also we need to clarify what is "state dependent terms". During regularization we paid
attention only to ultraviolet divergences. In fact the stress-energy tensor contains finite
terms that depend on the state. For example for two dimensional gas of massless particles
with number of particles n|k| and, say Tuu component of stress-energy tensor, we have:

∂u+∂u−W =

∫ +∞

0

dωω

4π

(
eiω(u+−u−)n|k| + e−iω(u+−u−)(n|k| + 1)

)
≈

≈ 1

4π

1

(u+ − u−)2
+

∫ +∞

0

dωω

2π
n|k|
)
.

The first term should be regularized according to the scheme described above, while the
second is finite and named as "state dependent terms" in (C.3).
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